import gradio as gr import torch from transformers import DonutProcessor, VisionEncoderDecoderModel import re import json from huggingface_hub import HfApi import os p1=os.environ.get("PATH_MODEL") p2=os.environ.get("PATH_MODEL_v2") print(p1,p2) PATH_MODEL = "fruk19/donut_nfact_v4" processor = DonutProcessor.from_pretrained(PATH_MODEL) model = VisionEncoderDecoderModel.from_pretrained(PATH_MODEL) device = "cuda" if torch.cuda.is_available() else "cpu" model.eval() model.to(device) def predict(test_image): pixel_values = processor(test_image, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) task_prompt = "" decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids decoder_input_ids = decoder_input_ids.to(device) # autoregressively generate sequence outputs = model.generate( pixel_values, decoder_input_ids=decoder_input_ids, max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) # turn into JSON seq = processor.batch_decode(outputs.sequences)[0] seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token pred = processor.token2json(seq) return pred demo = gr.Interface(fn=predict, inputs=gr.inputs.Image(type="pil"), outputs="text", examples=["image_0.png","image_1.png","image_2.png","image_3.png"], ) demo.launch()