import streamlit as st import pandas as pd import pickle st.title("predict patient will death or not") #import rf = 'rf_pred.pkl' rfc = pickle.load(open(rf, 'rb')) st.write('Insert feature to predict') age = st.slider(label='age', min_value=0, max_value=200, value=42, step=1) ane = st.selectbox(label='anemia', options=['0', '1']) cp = st.slider(label='creatinine_phosphokinase', min_value=0, max_value=1000, value=420, step=1) dia = st.selectbox(label='diabetes', options=['0', '1']) ejt = st.slider(label='ejection_fraction', min_value=0, max_value=200, value=42, step=1) hbp = st.selectbox(label='high_blood_pressure', options=['0', '1']) pla = st.slider(label='platelets', min_value=100000.0, max_value=999999.0, value=420000.0, step=0.01) sc = st.slider(label='serum_creatinine', min_value=0.0, max_value=99.9, value=42.0, step=0.1) ss = st.slider(label='serum_sodium', min_value=0, max_value=999, value=42, step=1) sex = st.selectbox(label='sex', options=['0', '1']) smk = st.selectbox(label='smoking', options=['0', '1']) tym = st.slider(label='time', min_value=0, max_value=999, value=42, step=1) # color = st.number_input(label='Colour', min_value=240, max_value=255, value=245, step=1) # convert into dataframe data = pd.DataFrame({'age': [age], 'anemia': [ane], 'creatinine_phosphokinase': [cp], 'diabetes':[dia], 'ejection_fraction': [ejt], 'high_blood_pressure': [hbp], 'platelets': [pla], 'serum_creatinine': [sc], 'serum_sodium': [ss], 'sex': [sex], 'smoking': [smk], 'time': [tym]}) # model predict death = rfc.predict(data).tolist()[0] # interpretation st.write('Predition Result: ') if death == 0: st.text('yeh masih hidup') else: st.text('innalilahi wa inna ilaihi rajiun)