import math import torch from torch.nn import functional as F def feature_loss(fmap_r, fmap_g): loss = 0 for dr, dg in zip(fmap_r, fmap_g): for rl, gl in zip(dr, dg): rl = rl.float().detach() gl = gl.float() loss += torch.mean(torch.abs(rl - gl)) return loss * 2 def discriminator_loss(disc_real_outputs, disc_generated_outputs): loss = 0 r_losses = [] g_losses = [] for dr, dg in zip(disc_real_outputs, disc_generated_outputs): dr = dr.float() dg = dg.float() r_loss = torch.mean((1 - dr) ** 2) g_loss = torch.mean(dg**2) loss += r_loss + g_loss r_losses.append(r_loss.item()) g_losses.append(g_loss.item()) return loss, r_losses, g_losses def generator_loss(disc_outputs): loss = 0 gen_losses = [] for dg in disc_outputs: dg = dg.float() l = torch.mean((1 - dg) ** 2) gen_losses.append(l) loss += l return loss, gen_losses def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): """ z_p, logs_q: [b, h, t_t] m_p, logs_p: [b, h, t_t] """ z_p = z_p.float() logs_q = logs_q.float() m_p = m_p.float() logs_p = logs_p.float() z_mask = z_mask.float() kl = logs_p - logs_q - 0.5 kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p) kl = torch.sum(kl * z_mask) l = kl / torch.sum(z_mask) return l def mle_loss(z, m, logs, logdet, mask): l = torch.sum(logs) + 0.5 * torch.sum( torch.exp(-2 * logs) * ((z - m) ** 2) ) # neg normal likelihood w/o the constant term l = l - torch.sum(logdet) # log jacobian determinant l = l / torch.sum( torch.ones_like(z) * mask ) # averaging across batch, channel and time axes l = l + 0.5 * math.log(2 * math.pi) # add the remaining constant term return l