import gradio as gr import tensorflow as tf from PIL import Image import numpy as np labels = ['Banana', 'Coconut', 'Eggplant', 'Mango', 'Melon', 'Orange', 'Pineapple', 'Watermelon'] def predict_pokemon_type(uploaded_file): if uploaded_file is None: return "No file uploaded.", None, "No prediction" model = tf.keras.models.load_model('fruits-xception-model.keras') # Load the image from the file path with Image.open(uploaded_file) as img: img = img.resize((150, 150)) img_array = np.array(img) prediction = model.predict(np.expand_dims(img_array, axis=0)) # Identify the most confident prediction confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))} return img, confidences # Define the Gradio interface iface = gr.Interface( fn=predict_pokemon_type, # Function to process the input inputs=gr.File(label="Upload File"), # File upload widget outputs=["image", "text"], # Output types for image and text title="Fruit Classifier", # Title of the interface description="Upload a picture of a Fruit (preferably a Banana, Coconut, Eggplant, Mango, Melon, Orange, Pineapple or Watermelon) to see what fruit it is and the models confidence level. Accuracy: 0.8997 - Loss: 0.4229 on Test Data" # Description of the interface ) # Launch the interface iface.launch()