import streamlit as st from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.legacy.callbacks import CallbackManager from llama_index.llms.openai_like import OpenAILike # 设置页面配置必须是第一个 Streamlit 命令 st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗") # Create an instance of CallbackManager callback_manager = CallbackManager() api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/" model = "internlm2.5-latest" # 使用 Streamlit 侧边栏让用户输入 API Key api_key = st.sidebar.text_input('API Key', value='', type='password') # 确保 api_key 不为空 if not api_key: st.warning("请输入有效的 API Key.") else: # 初始化 LLM 时使用用户提供的 API Key llm = OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True, callback_manager=callback_manager) st.title("llama_index_demo") # 初始化模型 @st.cache_resource def init_models(): embed_model = HuggingFaceEmbedding( model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" ) Settings.embed_model = embed_model # 用初始化llm Settings.llm = llm documents = SimpleDirectoryReader("./data").load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() return query_engine # 检查是否需要初始化模型 if 'query_engine' not in st.session_state and api_key: st.session_state['query_engine'] = init_models() def greet2(question): response = st.session_state['query_engine'].query(question) return response # Store LLM generated responses if "messages" not in st.session_state.keys(): st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}] # Display or clear chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) def clear_chat_history(): st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}] st.sidebar.button('Clear Chat History', on_click=clear_chat_history) # Function for generating LLaMA2 response def generate_llama_index_response(prompt_input): return greet2(prompt_input) # User-provided prompt if prompt := st.chat_input(): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.write(prompt) # Generate response only if the last message is not from assistant if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant"): with st.spinner("Thinking..."): response = generate_llama_index_response(prompt) placeholder = st.empty() placeholder.markdown(response) message = {"role": "assistant", "content": response} st.session_state.messages.append(message)