import gradio as gr from gradio_webrtc import WebRTC, ReplyOnPause, AdditionalOutputs import transformers import numpy as np from twilio.rest import Client import os import torch import librosa # pipe = transformers.pipeline( # model="fixie-ai/ultravox-v0_4_1-llama-3_1-8b", # trust_remote_code=True, # device=torch.device("cuda"), # ) # whisper = transformers.pipeline( # model="openai/whisper-large-v3-turbo", device=torch.device("cuda") # ) account_sid = os.environ.get("TWILIO_ACCOUNT_SID") auth_token = os.environ.get("TWILIO_AUTH_TOKEN") if account_sid and auth_token: client = Client(account_sid, auth_token) token = client.tokens.create() rtc_configuration = { "iceServers": token.ice_servers, "iceTransportPolicy": "relay", } else: rtc_configuration = None def transcribe( audio: tuple[int, np.ndarray], transformers_chat: list[dict], conversation: list[dict], ): original_sr = audio[0] target_sr = 16000 audio_sr = librosa.resample( audio[1].astype(np.float32) / 32768.0, orig_sr=original_sr, target_sr=target_sr ) tf_input = [d for d in transformers_chat] output = pipe( {"audio": audio_sr, "turns": tf_input, "sampling_rate": target_sr}, max_new_tokens=512, ) transcription = whisper({"array": audio_sr.squeeze(), "sampling_rate": target_sr}) conversation.append({"role": "user", "content": transcription["text"]}) conversation.append({"role": "assistant", "content": output}) transformers_chat.append({"role": "user", "content": transcription["text"]}) transformers_chat.append({"role": "assistant", "content": output}) yield AdditionalOutputs(transformers_chat, conversation) with gr.Blocks() as demo: gr.HTML( """
Once you grant access to your microphone, you can talk naturally to Ultravox. When you stop talking, the audio will be sent for processing.
Each conversation is limited to 90 seconds. Once the time limit is up you can rejoin the conversation.
""" ) with gr.Row(): transformers_chat = gr.State( value=[ { "role": "system", "content": "You are a friendly and helpful character. You love to answer questions for people.", } ] ) with gr.Group(): transcript = gr.Chatbot(label="transcript", type="messages") audio = WebRTC( rtc_configuration=rtc_configuration, label="Stream", mode="send", modality="audio", ) audio.stream( ReplyOnPause(transcribe), inputs=[audio, transformers_chat, transcript], outputs=[audio], time_limit=90, ) audio.on_additional_outputs( lambda t, g: (t, g), outputs=[transformers_chat, transcript], queue=False, show_progress="hidden", ) if __name__ == "__main__": demo.launch()