# Define dataset dataset = dict( type="VideoTextDataset", data_path=None, num_frames=1, frame_interval=1, image_size=(256, 256), transform_name="center", ) # Define acceleration num_workers = 4 dtype = "bf16" grad_checkpoint = False plugin = "zero2" sp_size = 1 # Define model model = dict( type="DiT-XL/2", no_temporal_pos_emb=True, enable_flashattn=True, enable_layernorm_kernel=True, ) vae = dict( type="VideoAutoencoderKL", from_pretrained="stabilityai/sd-vae-ft-ema", ) text_encoder = dict( type="clip", from_pretrained="openai/clip-vit-base-patch32", model_max_length=77, ) scheduler = dict( type="iddpm", timestep_respacing="", ) # Others seed = 42 outputs = "outputs" wandb = False epochs = 1000 log_every = 10 ckpt_every = 1000 load = None batch_size = 128 lr = 1e-4 # according to DiT repo grad_clip = 1.0