import os import sys import numpy as np import torch import torch.nn.functional as F from torchvision import transforms from PIL import Image from network import pvt_cls as TCN import gradio as gr def demo(img_path): # config batch_size = 8 crop_size = 256 model_path = '/users/k21163430/workspace/TreeFormer/models/best_model.pth' device = torch.device('cuda') # prepare model model = TCN.pvt_treeformer(pretrained=False) model.to(device) model.load_state_dict(torch.load(model_path, device)) model.eval() # preprocess img = Image.open(img_path).convert('RGB') show_img = np.array(img) wd, ht = img.size st_size = 1.0 * min(wd, ht) if st_size < crop_size: rr = 1.0 * crop_size / st_size wd = round(wd * rr) ht = round(ht * rr) st_size = 1.0 * min(wd, ht) img = img.resize((wd, ht), Image.BICUBIC) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) img = transform(img) img = img.unsqueeze(0) # model forward with torch.no_grad(): inputs = img.to(device) crop_imgs, crop_masks = [], [] b, c, h, w = inputs.size() rh, rw = crop_size, crop_size for i in range(0, h, rh): gis, gie = max(min(h - rh, i), 0), min(h, i + rh) for j in range(0, w, rw): gjs, gje = max(min(w - rw, j), 0), min(w, j + rw) crop_imgs.append(inputs[:, :, gis:gie, gjs:gje]) mask = torch.zeros([b, 1, h, w]).to(device) mask[:, :, gis:gie, gjs:gje].fill_(1.0) crop_masks.append(mask) crop_imgs, crop_masks = map(lambda x: torch.cat( x, dim=0), (crop_imgs, crop_masks)) crop_preds = [] nz, bz = crop_imgs.size(0), batch_size for i in range(0, nz, bz): gs, gt = i, min(nz, i + bz) crop_pred, _ = model(crop_imgs[gs:gt]) crop_pred = crop_pred[0] _, _, h1, w1 = crop_pred.size() crop_pred = F.interpolate(crop_pred, size=( h1 * 4, w1 * 4), mode='bilinear', align_corners=True) / 16 crop_preds.append(crop_pred) crop_preds = torch.cat(crop_preds, dim=0) # splice them to the original size idx = 0 pred_map = torch.zeros([b, 1, h, w]).to(device) for i in range(0, h, rh): gis, gie = max(min(h - rh, i), 0), min(h, i + rh) for j in range(0, w, rw): gjs, gje = max(min(w - rw, j), 0), min(w, j + rw) pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx] idx += 1 # for the overlapping area, compute average value mask = crop_masks.sum(dim=0).unsqueeze(0) outputs = pred_map / mask outputs = F.interpolate(outputs, size=( h, w), mode='bilinear', align_corners=True)/4 outputs = pred_map / mask model_output = round(torch.sum(outputs).item()) print("{}: {}".format(img_path, model_output)) outputs = outputs.squeeze().cpu().numpy() outputs = (outputs - np.min(outputs)) / \ (np.max(outputs) - np.min(outputs)) show_img = show_img / 255.0 show_img = show_img * 0.2 + outputs[:, :, None] * 0.8 return model_output, show_img if __name__ == "__main__": # test # img_path = sys.argv[1] # demo(img) # Launch a gr.Interface gr_demo = gr.Interface(fn=demo, inputs=gr.Image(sources=["upload", "webcam", "clipboard"], type="filepath", label="Input Image", width=768, height=768, ), outputs=[ gr.Number(label="Predicted Tree Count"), gr.Image(label="Density Map", width=768, height=768, ) ], title="TreeFormer", description="TreeFormer is a semi-supervised transformer-based framework for tree counting from a single high resolution image. Upload an image and TreeFormer will predict the number of trees in the image and generate a density map of the trees.", article="This work has been developed a spart of the ReSET project which has received funding from the European Union's Horizon 2020 FET Proactive Programme under grant agreement No 101017857. The contents of this publication are the sole responsibility of the ReSET consortium and do not necessarily reflect the opinion of the European Union.", examples=[ ["./examples/IMG_101.jpg"], ["./examples/IMG_125.jpg"], ["./examples/IMG_138.jpg"], ["./examples/IMG_180.jpg"], ["./examples/IMG_18.jpg"], ["./examples/IMG_206.jpg"], ["./examples/IMG_223.jpg"], ["./examples/IMG_247.jpg"], ["./examples/IMG_270.jpg"], ["./examples/IMG_306.jpg"], ], # cache_examples=True, examples_per_page=10, allow_flagging=False, theme=gr.themes.Default(), ) gr_demo.launch(share=True, server_port=7860, favicon_path="./assets/reset.png")