import cv2 import IPython from PIL import ImageColor from ultralytics import YOLO class ObjectDetection: def __init__(self, model_name='Yolov8'): self.model_name = model_name self.model = self.load_model() self.classes = self.model.names self.device = 'cpu' def load_model(self): model = YOLO(f"weights/{self.model_name}_best.pt") return model def v8_score_frame(self, frame): results = self.model(frame) labels = [] confidences = [] coords = [] for result in results: boxes = result.boxes.cpu().numpy() label = boxes.cls conf = boxes.conf coord = boxes.xyxy labels.extend(label) confidences.extend(conf) coords.extend(coord) return labels, confidences, coords def get_coords(self, frame, row): return int(row[0]), int(row[1]), int(row[2]), int(row[3]) def class_to_label(self, x): return self.classes[int(x)] def get_color(self, code): rgb = ImageColor.getcolor(code, "RGB") return rgb def plot_bboxes(self, results, frame, threshold=0.5, box_color='red', text_color='white'): labels, conf, coord = results frame = frame.copy() box_color = self.get_color(box_color) text_color = self.get_color(text_color) for i in range(len(labels)): if conf[i] >= threshold: x1, y1, x2, y2 = self.get_coords(frame, coord[i]) class_name = self.class_to_label(labels[i]) cv2.rectangle(frame, (x1, y1), (x2, y2), box_color, 2) cv2.putText(frame, f"{class_name} - {conf[i]*100:.2f}%", (x1, y1), cv2.FONT_HERSHEY_COMPLEX, 0.5, text_color) return frame