# 抠出图像 import os import sys import argparse import numpy as np from PIL import Image import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from src.models.modnet import MODNet # 网页制作 import gradio as gr import cv2 def to_black(im): # define cmd arguments # parser = argparse.ArgumentParser() # parser.add_argument('--input-path', type=str, help='path of input images') # parser.add_argument('--output-path', type=str, help='path of output images') # parser.add_argument('--ckpt-path', type=str, help='path of pre-trained MODNet') # parser.add_argument('pretrained/modnet_photographic.ckpt') # args = parser.parse_args() # check input arguments # if not os.path.exists(args.input_path): # print('Cannot find input path: {0}'.format(args.input_path)) # exit() # if not os.path.exists(args.output_path): # print('Cannot find output path: {0}'.format(args.output_path)) # exit() # if not os.path.exists(args.ckpt_path): # print('Cannot find ckpt path: {0}'.format(args.ckpt_path)) # exit() # define hyper-parameters ref_size = 512 # define image to tensor transform im_transform = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ] ) # create MODNet and load the pre-trained ckpt modnet = MODNet(backbone_pretrained=False) modnet = nn.DataParallel(modnet).cuda() modnet.load_state_dict(torch.load('pretrained/modnet_photographic.ckpt')) modnet.eval() # 注:程序中的数字仅表示某张输入图片尺寸,如1080x1440,此处只为记住其转换过程。 # inference images # im_names = os.listdir(args.input_path) # for im_name in im_names: # print('Process image: {0}'.format(im_name)) # read image # unify image channels to 3 im = np.asarray(im) if len(im.shape) == 2: im = im[:, :, None] if im.shape[2] == 1: im = np.repeat(im, 3, axis=2) elif im.shape[2] == 4: im = im[:, :, 0:3] im_org = im # 保存numpy原始数组 (1080,1440,3) # convert image to PyTorch tensor im = Image.fromarray(im) im = im_transform(im) # add mini-batch dim im = im[None, :, :, :] # resize image for input im_b, im_c, im_h, im_w = im.shape if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size: if im_w >= im_h: im_rh = ref_size im_rw = int(im_w / im_h * ref_size) elif im_w < im_h: im_rw = ref_size im_rh = int(im_h / im_w * ref_size) else: im_rh = im_h im_rw = im_w im_rw = im_rw - im_rw % 32 im_rh = im_rh - im_rh % 32 im = F.interpolate(im, size=(im_rh, im_rw), mode='area') # inference _, _, matte = modnet(im.cuda(), True) # 从模型获得的 matte ([1,1,512, 672]) # resize and save matte,foreground picture matte = F.interpolate(matte, size=(im_h, im_w), mode='area') #内插,扩展到([1,1,1080,1440]) 范围[0,1] matte = matte[0][0].data.cpu().numpy() # torch 张量转换成numpy (1080, 1440) # matte_name = im_name.split('.')[0] + '_matte.png' # Image.fromarray(((matte * 255).astype('uint8')), mode='L').save(os.path.join(args.output_path, matte_name)) matte_org = np.repeat(np.asarray(matte)[:, :, None], 3, axis=2) # 扩展到 (1080, 1440, 3) 以便和im_org计算 foreground = im_org * matte_org + np.full(im_org.shape, 255) * (1 - matte_org) # 计算前景,获得抠像 # fg_name = im_name.split('.')[0] + '_fg.png' Image.fromarray(((foreground).astype('uint8')), mode='RGB').save(os.path.join('output-img', 'fg_name.png')) output = Image.open(os.path.join('output-img', 'fg_name.png')) return output #if __name__ == '__main__': interface = gr.Interface(fn=to_black, inputs="image", outputs="image") interface.launch(share=True)