"""Answer questions about my resume."""
# %% IMPORTS
import logging
import gradio as gr
from openai import OpenAI
from openai.types.chat import (
ChatCompletionAssistantMessageParam,
ChatCompletionMessageParam,
ChatCompletionSystemMessageParam,
ChatCompletionUserMessageParam,
)
# %% CONFIGS
# %% - Models
MODEL_NAME = "gpt-3.5-turbo"
MODEL_TEMPERATURE = 0.0
# %% - Prompts
PROMPT_INSTRUCTIONS = """
You are Fmind AI Assistant, specialized in providing information from Médéric Hurier's (known as Fmind) resume. Your responses should be succinct and maintain a professional tone. If the request deviate from answering Médéric's resume, politely decline to answer the question.
Find more information about Médéric Hurier resume below (markdown format):
"""
PROMPT_CONTEXT = open("files/linkedin.md").read()
PROMPT_SYSTEM = PROMPT_INSTRUCTIONS + PROMPT_CONTEXT
# %% - Interfaces
INTERFACE_THEME = "base"
INTERFACE_TITLE = "Fmind AI Assistant"
INTERFACE_EXAMPLES = [
"Who is Médéric Hurier (Fmind)?",
"Is Fmind open to new opportunities?",
"Can you share details about Médéric PhD?",
"Elaborate on Médéric current work position",
"Describe his proficiency with Python programming",
"What is the answer to life, the universe, and everything?",
]
INTERFACE_DESCRIPTION = (
"
"
"Visit my website: https://fmind.dev"
" - Médéric HURIER (Fmind)"
" - Freelancer: AI/FM/MLOps Engineer | Data Scientist | MLOps Community Organizer | MLflow Ambassador | Hacker | PhD"
""
)
INTERFACE_CACHE_EXAMPLES = "lazy"
INTERFACE_CONCURRENCY_LIMIT = None
# %% CLIENTS
client = OpenAI()
# %% LOGGING
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s][%(levelname)s] %(message)s",
)
# %% FUNCTIONS
def answer(message: str, history: list[tuple[str, str]]) -> str:
"""Answer questions about my resume."""
# messages
messages: list[ChatCompletionMessageParam] = []
messages += [ChatCompletionSystemMessageParam(role="system", content=PROMPT_SYSTEM)]
for user, assistant in history:
messages += [ChatCompletionUserMessageParam(role="user", content=user)]
messages += [ChatCompletionAssistantMessageParam(role="assistant", content=assistant)]
messages += [ChatCompletionUserMessageParam(role="user", content=message)]
# response
response = client.chat.completions.create(
model=MODEL_NAME, messages=messages, temperature=MODEL_TEMPERATURE
)
logging.info("Response: %s", response.usage)
# content
content = response.choices[0].message.content
if content is None:
logging.warning("Response content is None: %s", response)
return "[Internal Error] Sorry, I don't have an answer for that."
return content
# %% INTERFACES
interface = gr.ChatInterface(
fn=answer,
theme=INTERFACE_THEME,
title=INTERFACE_TITLE,
examples=INTERFACE_EXAMPLES,
description=INTERFACE_DESCRIPTION,
cache_examples=INTERFACE_CACHE_EXAMPLES,
concurrency_limit=INTERFACE_CONCURRENCY_LIMIT,
clear_btn=None,
retry_btn=None,
undo_btn=None,
)
if __name__ == "__main__":
interface.launch()