"""Answer questions about my resume.""" # %% IMPORTS import logging import gradio as gr from openai import OpenAI from openai.types.chat import ( ChatCompletionAssistantMessageParam, ChatCompletionMessageParam, ChatCompletionSystemMessageParam, ChatCompletionUserMessageParam, ) # %% CONFIGS # %% - Models MODEL_NAME = "gpt-3.5-turbo" MODEL_TEMPERATURE = 0.0 # %% - Prompts PROMPT_INSTRUCTIONS = """ You are Fmind AI Assistant, specialized in providing information from Médéric Hurier's (known as Fmind) resume. Your responses should be succinct and maintain a professional tone. If the request deviate from answering Médéric's resume, politely decline to answer the question. Find more information about Médéric Hurier resume below (markdown format): """ PROMPT_CONTEXT = open("files/linkedin.md").read() PROMPT_SYSTEM = PROMPT_INSTRUCTIONS + PROMPT_CONTEXT # %% - Interfaces INTERFACE_THEME = "base" INTERFACE_TITLE = "Fmind AI Assistant" INTERFACE_EXAMPLES = [ "Who is Médéric Hurier (Fmind)?", "Is Fmind open to new opportunities?", "Can you share details about Médéric PhD?", "Elaborate on Médéric current work position", "Describe his proficiency with Python programming", "What is the answer to life, the universe, and everything?", ] INTERFACE_DESCRIPTION = ( "
" "Visit my website: https://fmind.dev" " - Médéric HURIER (Fmind)" " - Freelancer: AI/FM/MLOps Engineer | Data Scientist | MLOps Community Organizer | MLflow Ambassador | Hacker | PhD" "
" ) INTERFACE_CACHE_EXAMPLES = "lazy" INTERFACE_CONCURRENCY_LIMIT = None # %% CLIENTS client = OpenAI() # %% LOGGING logging.basicConfig( level=logging.INFO, format="[%(asctime)s][%(levelname)s] %(message)s", ) # %% FUNCTIONS def answer(message: str, history: list[tuple[str, str]]) -> str: """Answer questions about my resume.""" # messages messages: list[ChatCompletionMessageParam] = [] messages += [ChatCompletionSystemMessageParam(role="system", content=PROMPT_SYSTEM)] for user, assistant in history: messages += [ChatCompletionUserMessageParam(role="user", content=user)] messages += [ChatCompletionAssistantMessageParam(role="assistant", content=assistant)] messages += [ChatCompletionUserMessageParam(role="user", content=message)] # response response = client.chat.completions.create( model=MODEL_NAME, messages=messages, temperature=MODEL_TEMPERATURE ) logging.info("Response: %s", response.usage) # content content = response.choices[0].message.content if content is None: logging.warning("Response content is None: %s", response) return "[Internal Error] Sorry, I don't have an answer for that." return content # %% INTERFACES interface = gr.ChatInterface( fn=answer, theme=INTERFACE_THEME, title=INTERFACE_TITLE, examples=INTERFACE_EXAMPLES, description=INTERFACE_DESCRIPTION, cache_examples=INTERFACE_CACHE_EXAMPLES, concurrency_limit=INTERFACE_CONCURRENCY_LIMIT, clear_btn=None, retry_btn=None, undo_btn=None, ) if __name__ == "__main__": interface.launch()