# PyTorch Actor-Critic deep reinforcement learning algorithms: A2C and PPO The `torch_ac` package contains the PyTorch implementation of two Actor-Critic deep reinforcement learning algorithms: - [Synchronous A3C (A2C)](https://arxiv.org/pdf/1602.01783.pdf) - [Proximal Policy Optimizations (PPO)](https://arxiv.org/pdf/1707.06347.pdf) **Note:** An example of use of this package is given in the [`rl-starter-files` repository](https://github.com/lcswillems/rl-starter-files). More details below. ## Features - **Recurrent policies** - Reward shaping - Handle observation spaces that are tensors or _dict of tensors_ - Handle _discrete_ action spaces - Observation preprocessing - Multiprocessing - CUDA ## Installation ```bash pip3 install torch-ac ``` **Note:** If you want to modify `torch-ac` algorithms, you will need to rather install a cloned version, i.e.: ``` git clone https://github.com/lcswillems/torch-ac.git cd torch-ac pip3 install -e . ``` ## Package components overview A brief overview of the components of the package: - `torch_ac.A2CAlgo` and `torch_ac.PPOAlgo` classes for A2C and PPO algorithms - `torch_ac.ACModel` and `torch_ac.RecurrentACModel` abstract classes for non-recurrent and recurrent actor-critic models - `torch_ac.DictList` class for making dictionnaries of lists list-indexable and hence batch-friendly ## Package components details Here are detailled the most important components of the package. `torch_ac.A2CAlgo` and `torch_ac.PPOAlgo` have 2 methods: - `__init__` that may take, among the other parameters: - an `acmodel` actor-critic model, i.e. an instance of a class inheriting from either `torch_ac.ACModel` or `torch_ac.RecurrentACModel`. - a `preprocess_obss` function that transforms a list of observations into a list-indexable object `X` (e.g. a PyTorch tensor). The default `preprocess_obss` function converts observations into a PyTorch tensor. - a `reshape_reward` function that takes into parameter an observation `obs`, the action `action` taken, the reward `reward` received and the terminal status `done` and returns a new reward. By default, the reward is not reshaped. - a `recurrence` number to specify over how many timesteps gradient is backpropagated. This number is only taken into account if a recurrent model is used and **must divide** the `num_frames_per_agent` parameter and, for PPO, the `batch_size` parameter. - `update_parameters` that first collects experiences, then update the parameters and finally returns logs. `torch_ac.ACModel` has 2 abstract methods: - `__init__` that takes into parameter an `observation_space` and an `action_space`. - `forward` that takes into parameter N preprocessed observations `obs` and returns a PyTorch distribution `dist` and a tensor of values `value`. The tensor of values **must be** of size N, not N x 1. `torch_ac.RecurrentACModel` has 3 abstract methods: - `__init__` that takes into parameter the same parameters than `torch_ac.ACModel`. - `forward` that takes into parameter the same parameters than `torch_ac.ACModel` along with a tensor of N memories `memory` of size N x M where M is the size of a memory. It returns the same thing than `torch_ac.ACModel` plus a tensor of N memories `memory`. - `memory_size` that returns the size M of a memory. **Note:** The `preprocess_obss` function must return a list-indexable object (e.g. a PyTorch tensor). If your observations are dictionnaries, your `preprocess_obss` function may first convert a list of dictionnaries into a dictionnary of lists and then make it list-indexable using the `torch_ac.DictList` class as follow: ```python >>> d = DictList({"a": [[1, 2], [3, 4]], "b": [[5], [6]]}) >>> d.a [[1, 2], [3, 4]] >>> d[0] DictList({"a": [1, 2], "b": [5]}) ``` **Note:** if you use a RNN, you will need to set `batch_first` to `True`. ## Examples Examples of use of the package components are given in the [`rl-starter-scripts` repository](https://github.com/lcswillems/torch-rl). ### Example of use of `torch_ac.A2CAlgo` and `torch_ac.PPOAlgo` ```python ... algo = torch_ac.PPOAlgo(envs, acmodel, args.frames_per_proc, args.discount, args.lr, args.gae_lambda, args.entropy_coef, args.value_loss_coef, args.max_grad_norm, args.recurrence, args.optim_eps, args.clip_eps, args.epochs, args.batch_size, preprocess_obss) ... exps, logs1 = algo.collect_experiences() logs2 = algo.update_parameters(exps) ``` More details [here](https://github.com/lcswillems/rl-starter-files/blob/master/scripts/train.py). ### Example of use of `torch_ac.DictList` ```python torch_ac.DictList({ "image": preprocess_images([obs["image"] for obs in obss], device=device), "text": preprocess_texts([obs["mission"] for obs in obss], vocab, device=device) }) ``` More details [here](https://github.com/lcswillems/rl-starter-files/blob/master/utils/format.py). ### Example of implementation of `torch_ac.RecurrentACModel` ```python class ACModel(nn.Module, torch_ac.RecurrentACModel): ... def forward(self, obs, memory): ... return dist, value, memory ``` More details [here](https://github.com/lcswillems/rl-starter-files/blob/master/model.py). ### Examples of `preprocess_obss` functions More details [here](https://github.com/lcswillems/rl-starter-files/blob/master/utils/format.py).