import math from dataclasses import dataclass import torch from einops import rearrange from torch import Tensor, nn import torch from einops import rearrange from torch import Tensor try: import flash_attn if hasattr(flash_attn, '__version__') and int(flash_attn.__version__[0]) == 2: from flash_attn.flash_attn_interface import flash_attn_kvpacked_func from flash_attn.modules.mha import FlashSelfAttention else: from flash_attn.flash_attn_interface import flash_attn_unpadded_kvpacked_func from flash_attn.modules.mha import FlashSelfAttention except Exception as e: print(f'flash_attn import failed: {e}') def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: q, k = apply_rope(q, k, pe) x = torch.nn.functional.scaled_dot_product_attention(q, k, v) x = rearrange(x, "B H L D -> B L (H D)") return x def rope(pos: Tensor, dim: int, theta: int) -> Tensor: assert dim % 2 == 0 scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim omega = 1.0 / (theta**scale) out = torch.einsum("...n,d->...nd", pos, omega) out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) return out.float() def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) class EmbedND(nn.Module): def __init__(self, dim: int, theta: int, axes_dim: list[int]): super().__init__() self.dim = dim self.theta = theta self.axes_dim = axes_dim def forward(self, ids: Tensor) -> Tensor: n_axes = ids.shape[-1] emb = torch.cat( [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3, ) return emb.unsqueeze(1) def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ t = time_factor * t half = dim // 2 freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( t.device ) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) if torch.is_floating_point(t): embedding = embedding.to(t) return embedding class MLPEmbedder(nn.Module): def __init__(self, in_dim: int, hidden_dim: int): super().__init__() self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) self.silu = nn.SiLU() self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) def forward(self, x: Tensor) -> Tensor: return self.out_layer(self.silu(self.in_layer(x))) class RMSNorm(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.scale = nn.Parameter(torch.ones(dim)) def forward(self, x: Tensor): x_dtype = x.dtype x = x.float() rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) return (x * rrms).to(dtype=x_dtype) * self.scale class QKNorm(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.query_norm = RMSNorm(dim) self.key_norm = RMSNorm(dim) def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: q = self.query_norm(q) k = self.key_norm(k) return q.to(v), k.to(v) class SelfAttention(nn.Module): def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.norm = QKNorm(head_dim) self.proj = nn.Linear(dim, dim) def forward(self, x: Tensor, pe: Tensor) -> Tensor: qkv = self.qkv(x) q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) q, k = self.norm(q, k, v) x = attention(q, k, v, pe=pe) x = self.proj(x) return x class FlashSelfMHAModified(nn.Module): """ self-attention with flashattention """ def __init__(self, dim, num_heads, qkv_bias=False, qk_norm=True, attn_drop=0.0, proj_drop=0.0, device=None, dtype=None, norm_layer=RMSNorm, ): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.dim = dim self.num_heads = num_heads assert self.dim % num_heads == 0, "self.kdim must be divisible by num_heads" self.head_dim = self.dim // num_heads assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8" self.Wqkv = nn.Linear(dim, 3 * dim, bias=qkv_bias, **factory_kwargs) # TODO: eps should be 1 / 65530 if using fp16 self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.inner_attn = FlashSelfAttention(attention_dropout=attn_drop) self.out_proj = nn.Linear(dim, dim, bias=qkv_bias, **factory_kwargs) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, pe): """ Parameters ---------- x: torch.Tensor (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) """ b, s, d = x.shape qkv = self.Wqkv(x) qkv = qkv.view(b, s, 3, self.num_heads, self.head_dim) # [b, s, 3, h, d] q, k, v = qkv.unbind(dim=2) # [b, s, h, d] q = self.q_norm(q).half() # [b, s, h, d] k = self.k_norm(k).half() q, k = apply_rope(q, k, pe) qkv = torch.stack([q, k, v], dim=2) # [b, s, 3, h, d] context = self.inner_attn(qkv) out = self.out_proj(context.view(b, s, d)) out = self.proj_drop(out) return out @dataclass class ModulationOut: shift: Tensor scale: Tensor gate: Tensor class Modulation(nn.Module): def __init__(self, dim: int, double: bool): super().__init__() self.is_double = double self.multiplier = 6 if double else 3 self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) return ( ModulationOut(*out[:3]), ModulationOut(*out[3:]) if self.is_double else None, ) class DoubleStreamBlock(nn.Module): def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False): super().__init__() mlp_hidden_dim = int(hidden_size * mlp_ratio) self.num_heads = num_heads self.hidden_size = hidden_size self.img_mod = Modulation(hidden_size, double=True) self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.img_mlp = nn.Sequential( nn.Linear(hidden_size, mlp_hidden_dim, bias=True), nn.GELU(approximate="tanh"), nn.Linear(mlp_hidden_dim, hidden_size, bias=True), ) self.txt_mod = Modulation(hidden_size, double=True) self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.txt_mlp = nn.Sequential( nn.Linear(hidden_size, mlp_hidden_dim, bias=True), nn.GELU(approximate="tanh"), nn.Linear(mlp_hidden_dim, hidden_size, bias=True), ) def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]: img_mod1, img_mod2 = self.img_mod(vec) txt_mod1, txt_mod2 = self.txt_mod(vec) # prepare image for attention img_modulated = self.img_norm1(img) img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift img_qkv = self.img_attn.qkv(img_modulated) img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) # prepare txt for attention txt_modulated = self.txt_norm1(txt) txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift txt_qkv = self.txt_attn.qkv(txt_modulated) txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) # run actual attention q = torch.cat((txt_q, img_q), dim=2) k = torch.cat((txt_k, img_k), dim=2) v = torch.cat((txt_v, img_v), dim=2) attn = attention(q, k, v, pe=pe) txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] # calculate the img bloks img = img + img_mod1.gate * self.img_attn.proj(img_attn) img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) # calculate the txt bloks txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) return img, txt class SingleStreamBlock(nn.Module): """ A DiT block with parallel linear layers as described in https://arxiv.org/abs/2302.05442 and adapted modulation interface. """ def __init__( self, hidden_size: int, num_heads: int, mlp_ratio: float = 4.0, qk_scale: float | None = None, ): super().__init__() self.hidden_dim = hidden_size self.num_heads = num_heads head_dim = hidden_size // num_heads self.scale = qk_scale or head_dim**-0.5 self.mlp_hidden_dim = int(hidden_size * mlp_ratio) # qkv and mlp_in self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) # proj and mlp_out self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) self.norm = QKNorm(head_dim) self.hidden_size = hidden_size self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.mlp_act = nn.GELU(approximate="tanh") self.modulation = Modulation(hidden_size, double=False) def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: mod, _ = self.modulation(vec) x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) q, k = self.norm(q, k, v) # compute attention attn = attention(q, k, v, pe=pe) # compute activation in mlp stream, cat again and run second linear layer output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) return x + mod.gate * output class LastLayer(nn.Module): def __init__(self, hidden_size: int, patch_size: int, out_channels: int): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) def forward(self, x: Tensor, vec: Tensor) -> Tensor: shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] x = self.linear(x) return x