import gradio as gr from musiclang_predict import MusicLangPredictor from musiclang import Score from midi2audio import FluidSynth import os def inner_loop(nb_tokens, temperature, chord_progression, tempo, midi_file, bar_range): top_p = 1.0 seed = 0 print(midi_file) # Initialize the MusicLangPredictor ml = MusicLangPredictor('musiclang/musiclang-v2') if midi_file is not None: # Load the MIDI file and use it as the score prompt filepath = midi_file start_bar, end_bar = map(int, bar_range.split("-")) score = Score.from_midi(filepath, chord_range=(start_bar, end_bar)) else: score = None # Default score is None if no MIDI file is uploaded # Generate the score based on provided inputs and the uploaded MIDI file if available if chord_progression.strip() == "" and score is None: # Generate without specific chord progression or MIDI prompt generated_score = ml.predict( nb_tokens=int(nb_tokens), temperature=float(temperature), topp=top_p, rng_seed=seed ) elif score is not None: # Generate using the uploaded MIDI file as a prompt generated_score = ml.predict( score=score, # Use the uploaded MIDI as the score prompt nb_tokens=int(nb_tokens), temperature=float(temperature), topp=top_p, rng_seed=seed ) else: # Generate with specific chord progression generated_score = ml.predict_chords( chord_progression, time_signature=(4, 4), temperature=temperature, topp=top_p, rng_seed=seed ) chord_repr = generated_score.to_chord_repr() # Save the generated score as a MIDI file midi_path = 'test.mid' generated_score.to_midi(midi_path, tempo=tempo, time_signature=(4, 4)) # Convert MIDI to WAV then WAV to MP3 for playback wav_path = 'result.wav' mp3_path = 'result.mp3' FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2").midi_to_audio(midi_path, wav_path) os.system(f'ffmpeg -i {wav_path} -acodec libmp3lame -y -loglevel quiet -stats {mp3_path}') return mp3_path, midi_path, chord_repr def musiclang(nb_tokens, temperature, chord_progression, tempo, midi_file, bar_range): exception = None mp3_path, midi_path, chord_repr = None, None, None try: mp3_path, midi_path, chord_repr = inner_loop(nb_tokens, temperature, chord_progression, tempo, midi_file, bar_range) except Exception as e: exception = "Error : " + e.__class__.__name__ + " " + str(e) # Return the MP3 path for Gradio to display and the MIDI file path for download return mp3_path, midi_path, chord_repr, exception # Update Gradio interface to include MIDI file upload and bar range selection iface = gr.Interface( fn=musiclang, inputs=[ gr.Number(label="Number of Tokens", value=1024, minimum=256, maximum=2048, step=256), gr.Slider(label="Temperature", value=0.9, minimum=0.1, maximum=1.0, step=0.1), gr.Textbox(label="Chord Progression", placeholder="Am CM Dm/F E7 Am", lines=2, value=""), gr.Slider(label="Tempo", value=120, minimum=60, maximum=240, step=1), gr.File(label="Upload MIDI File", type="filepath", file_types=[".mid", ".midi"]), gr.Textbox(label="Bar Range", placeholder="0-4", value="0-4") ], outputs=[ gr.Audio(label="Generated Music"), gr.File(label="Download MIDI"), gr.Textbox(label="Inferred output Chord Progression", lines=2, value=""), gr.Textbox(label="Info Message") # Initially hidden, shown only if there's an error ], title="Controllable Symbolic Music Generation with MusicLang Predict", description=""" \n Simple application that wraps musiclang predict. \n Customize the music generation by specifying the number of tokens, temperature, chord progression, tempo, and optionally uploading a MIDI file to use as a prompt. Specify the bar range for the MIDI prompt. \nChord qualities: M, m, 7, m7, m7b5, sus2, sus4, M7, dim, dim7. You can also specify the bass if it belongs to the chord (e.g., Bm/D). If no chord progression or MIDI file is given, it generates a free sample with the specified number of tokens.""" ) iface.launch()