import gradio as gr import pandas as pd import random df = pd.read_csv('data.csv') df_stats = pd.read_csv('data_stats_langs.csv') map_models = df_stats[['model','model_name']].set_index('model').to_dict() df = df.rename(columns=map_models['model_name']) models = sorted(df.columns.tolist()) models.remove('hash') models.remove('message') messages = sorted(df['message'].tolist(), key=len) messages_select = [(m[:250],m) for m in messages] def out(message, model1, model2): row = df[df['message'] == message] output1 = row[model1].values[0] output2 = row[model2].values[0] return message, output1, output2 OUTPUT_DESCRIPTION='''How good are OpenSource LLMs in German? I've benchmarked a couple of models and generated outputs for about 250 prompts to compare the models. For information about the used dataset and generation see the [README.md](https://huggingface.co/spaces/floleuerer/german_llm_outputs/blob/main/README.md) Select a Prompt and the models you would like to compare -> hit "Show Outputs" ''' BENCHMARK_DESCRIPTION='''# Columns de: German Benchmark results (arc, hellaswag, mmlu) en: English Benchmark results (arc, hellaswag, mmlu) de_frac: Given a german prompt - how often does the model correctly respond in German? ''' with gr.Blocks() as iface: with gr.Tab('Model Outputs'): gr.Markdown(OUTPUT_DESCRIPTION) with gr.Row(): drop_message = gr.Dropdown(messages_select, label='Prompt', value=random.choice(messages)) with gr.Row(): drop_model1 = gr.Dropdown(models, label='Model 1', value=random.choice(models)) drop_model2 = gr.Dropdown(models, label='Model 2', value=random.choice(models)) with gr.Row(): btn = gr.Button("Show Outputs") with gr.Row(): out_message = gr.TextArea(label='Prompt') with gr.Row(): out_model1 = gr.TextArea(label='Output Model 1') out_model2 = gr.TextArea(label='Output Model 2') with gr.Tab('Benchmarks'): gr.Markdown(BENCHMARK_DESCRIPTION) gr.Dataframe(df_stats.drop('model', axis=1)) btn.click(out, inputs=[drop_message, drop_model1, drop_model2], outputs=[out_message, out_model1, out_model2]) iface.launch()