from tqdm import tqdm import numpy as np from PIL import Image import argparse import random import torch import torch.nn.functional as F import os from torch import nn, optim from torch.autograd import Variable, grad from torch.utils.data import DataLoader from torchvision import datasets, transforms, utils from progan_modules import Generator, Discriminator def accumulate(model1, model2, decay=0.999): par1 = dict(model1.named_parameters()) par2 = dict(model2.named_parameters()) for k in par1.keys(): par1[k].data.mul_(decay).add_(par2[k].data, alpha=(1 - decay)) def imagefolder_loader(path): def loader(transform): data = datasets.ImageFolder(path, transform=transform) data_loader = DataLoader(data, shuffle=True, batch_size=batch_size, num_workers=2) return data_loader return loader def sample_data(dataloader, image_size=4): transform = transforms.Compose([ transforms.Resize(image_size+int(image_size*0.2)+1), transforms.RandomCrop(image_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) loader = dataloader(transform) return loader def train(generator, discriminator, init_step, loader, total_iter=600000, start_iter=0): step = init_step # can be 1 = 8, 2 = 16, 3 = 32, 4 = 64, 5 = 128, 6 = 128 data_loader = sample_data(loader, 4 * 2 ** step) dataset = iter(data_loader) #total_iter = 600000 total_iter_remain = total_iter - (total_iter//6)*(step-1) pbar = tqdm(range(total_iter_remain)) disc_loss_val = 0 gen_loss_val = 0 grad_loss_val = 0 from datetime import datetime import os date_time = datetime.now() post_fix = '%s_%s_%d_%d.txt'%(trial_name, date_time.date(), date_time.hour, date_time.minute) log_folder = 'trial_%s_%s_%d_%d'%(trial_name, date_time.date(), date_time.hour, date_time.minute) os.mkdir(log_folder) os.mkdir(log_folder+'/checkpoint') os.mkdir(log_folder+'/sample') config_file_name = os.path.join(log_folder, 'train_config_'+post_fix) config_file = open(config_file_name, 'w') config_file.write(str(args)) config_file.close() log_file_name = os.path.join(log_folder, 'train_log_'+post_fix) log_file = open(log_file_name, 'w') log_file.write('g,d,nll,onehot\n') log_file.close() from shutil import copy copy('train.py', log_folder+'/train_%s.py'%post_fix) copy('progan_modules.py', log_folder+'/model_%s.py'%post_fix) alpha = 0 #one = torch.FloatTensor([1]).to(device) one = torch.tensor(1, dtype=torch.float).to(device) mone = one * -1 iteration = 0 for i in pbar: discriminator.zero_grad() alpha = min(1, (2/(total_iter//6)) * iteration) if iteration > total_iter//6: alpha = 0 iteration = 0 step += 1 if step > 6: alpha = 1 step = 6 data_loader = sample_data(loader, 4 * 2 ** step) dataset = iter(data_loader) try: real_image, label = next(dataset) except (OSError, StopIteration): dataset = iter(data_loader) real_image, label = next(dataset) iteration += 1 ### 1. train Discriminator b_size = real_image.size(0) real_image = real_image.to(device) label = label.to(device) real_predict = discriminator( real_image, step=step, alpha=alpha) real_predict = real_predict.mean() \ - 0.001 * (real_predict ** 2).mean() real_predict.backward(mone) # sample input data: vector for Generator gen_z = torch.randn(b_size, input_code_size).to(device) fake_image = generator(gen_z, step=step, alpha=alpha) fake_predict = discriminator( fake_image.detach(), step=step, alpha=alpha) fake_predict = fake_predict.mean() fake_predict.backward(one) ### gradient penalty for D eps = torch.rand(b_size, 1, 1, 1).to(device) x_hat = eps * real_image.data + (1 - eps) * fake_image.detach().data x_hat.requires_grad = True hat_predict = discriminator(x_hat, step=step, alpha=alpha) grad_x_hat = grad( outputs=hat_predict.sum(), inputs=x_hat, create_graph=True)[0] grad_penalty = ((grad_x_hat.view(grad_x_hat.size(0), -1) .norm(2, dim=1) - 1)**2).mean() grad_penalty = 10 * grad_penalty grad_penalty.backward() grad_loss_val += grad_penalty.item() disc_loss_val += (real_predict - fake_predict).item() d_optimizer.step() ### 2. train Generator if (i + 1) % n_critic == 0: generator.zero_grad() discriminator.zero_grad() predict = discriminator(fake_image, step=step, alpha=alpha) loss = -predict.mean() gen_loss_val += loss.item() loss.backward() g_optimizer.step() accumulate(g_running, generator) if (i + 1) % 1000 == 0 or i==0: with torch.no_grad(): images = g_running(torch.randn(5 * 10, input_code_size).to(device), step=step, alpha=alpha).data.cpu() utils.save_image( images, f'{log_folder}/sample/{str(i + 1).zfill(6)}.png', nrow=10, normalize=True) if (i+1) % 10000 == 0 or i==0: try: torch.save(g_running.state_dict(), f'{log_folder}/checkpoint/{str(i + 1).zfill(6)}_g.model') torch.save(discriminator.state_dict(), f'{log_folder}/checkpoint/{str(i + 1).zfill(6)}_d.model') torch.save(g_optimizer.state_dict(), os.path.join(log_folder, 'checkpoint', f'{str(i + 1).zfill(6)}_g_optim.pth')) torch.save(d_optimizer.state_dict(), os.path.join(log_folder, 'checkpoint', f'{str(i + 1).zfill(6)}_d_optim.pth')) except: pass if (i+1)%500 == 0: state_msg = (f'{i + 1}; G: {gen_loss_val/(500//n_critic):.3f}; D: {disc_loss_val/500:.3f};' f' Grad: {grad_loss_val/500:.3f}; Alpha: {alpha:.3f}') log_file = open(log_file_name, 'a+') new_line = "%.5f,%.5f\n"%(gen_loss_val/(500//n_critic), disc_loss_val/500) log_file.write(new_line) log_file.close() disc_loss_val = 0 gen_loss_val = 0 grad_loss_val = 0 print(state_msg) #pbar.set_description(state_msg) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Progressive GAN, during training, the model will learn to generate images from a low resolution, then progressively getting high resolution ') parser.add_argument('--start_iter', type=int, default=0, help='Iterasi awal dari training') parser.add_argument('--checkpoint', type=str, default="/content/model/", help='Path to model checkpoint directory (default: None, train from scratch)') parser.add_argument('--path', type=str,default="/content/merged_dataset/Acne", help='path of specified dataset, should be a folder that has one or many sub image folders inside') parser.add_argument('--trial_name', type=str, default="test1", help='a brief description of the training trial') parser.add_argument('--gpu_id', type=int, default=0, help='0 is the first gpu, 1 is the second gpu, etc.') parser.add_argument('--lr', type=float, default=0.001, help='learning rate, default is 1e-3, usually dont need to change it, you can try make it bigger, such as 2e-3') parser.add_argument('--z_dim', type=int, default=128, help='the initial latent vector\'s dimension, can be smaller such as 64, if the dataset is not diverse') parser.add_argument('--channel', type=int, default=128, help='determines how big the model is, smaller value means faster training, but less capacity of the model') parser.add_argument('--batch_size', type=int, default=4, help='how many images to train together at one iteration') parser.add_argument('--n_critic', type=int, default=1, help='train Dhow many times while train G 1 time') parser.add_argument('--init_step', type=int, default=1, help='start from what resolution, 1 means 8x8 resolution, 2 means 16x16 resolution, ..., 6 means 256x256 resolution') parser.add_argument('--total_iter', type=int, default=300000, help='how many iterations to train in total, the value is in assumption that init step is 1') parser.add_argument('--pixel_norm', default=False, action="store_true", help='a normalization method inside the model, you can try use it or not depends on the dataset') parser.add_argument('--tanh', default=False, action="store_true", help='an output non-linearity on the output of Generator, you can try use it or not depends on the dataset') args = parser.parse_args() trial_name = args.trial_name device = torch.device("cuda:%d"%(args.gpu_id)) input_code_size = args.z_dim batch_size = args.batch_size n_critic = args.n_critic generator = Generator(in_channel=args.channel, input_code_dim=input_code_size, pixel_norm=args.pixel_norm, tanh=args.tanh).to(device) discriminator = Discriminator(feat_dim=args.channel).to(device) g_running = Generator(in_channel=args.channel, input_code_dim=input_code_size, pixel_norm=args.pixel_norm, tanh=args.tanh).to(device) ## you can directly load a pretrained model here if args.checkpoint: generator_path = os.path.join(args.checkpoint, "g.model") discriminator_path = os.path.join(args.checkpoint, "d.model") if os.path.exists(generator_path) and os.path.exists(discriminator_path): print(f"Loading checkpoints from {args.checkpoint}...") generator.load_state_dict(torch.load(generator_path)) g_running.load_state_dict(torch.load(generator_path)) discriminator.load_state_dict(torch.load(discriminator_path)) else: print(f"Warning: Checkpoint not found at {args.checkpoint}. Training from scratch!") else: print("No checkpoint provided, training from scratch.") if args.checkpoint: generator_path = os.path.join(args.checkpoint, "g.model") discriminator_path = os.path.join(args.checkpoint, "d.model") optimizer_g_path = os.path.join(args.checkpoint, "g_optim.pth") optimizer_d_path = os.path.join(args.checkpoint, "d_optim.pth") if os.path.exists(generator_path) and os.path.exists(discriminator_path): print(f"Loading checkpoints from {args.checkpoint}...") generator.load_state_dict(torch.load(generator_path)) g_running.load_state_dict(torch.load(generator_path)) discriminator.load_state_dict(torch.load(discriminator_path)) else: print(f"Warning: Checkpoint not found at {args.checkpoint}. Training from scratch!") else: print("No checkpoint provided, training from scratch.") g_running.train(False) g_optimizer = optim.Adam(generator.parameters(), lr=args.lr, betas=(0.0, 0.99)) d_optimizer = optim.Adam(discriminator.parameters(), lr=args.lr, betas=(0.0, 0.99)) optimizer_g_path = os.path.join(args.checkpoint, "g_optim.pth") optimizer_d_path = os.path.join(args.checkpoint, "d_optim.pth") if os.path.exists(optimizer_g_path) and os.path.exists(optimizer_d_path): g_optimizer.load_state_dict(torch.load(optimizer_g_path)) d_optimizer.load_state_dict(torch.load(optimizer_d_path)) print("Optimizers loaded successfully!") else: print("Warning: Optimizer checkpoint not found. Using new optimizers!") accumulate(g_running, generator, 0) loader = imagefolder_loader(args.path) train(generator, discriminator, args.init_step, loader, args.total_iter, args.start_iter)