import json import requests from mtranslate import translate from prompts import PROMPT_LIST import streamlit as st import random import transformers from transformers import GPT2Tokenizer, GPT2LMHeadModel import fasttext import SessionState LOGO = "huggingwayang.png" MODELS = { "GPT-2 Small": "flax-community/gpt2-small-indonesian", "GPT-2 Medium": "flax-community/gpt2-medium-indonesian", "GPT-2 Small finetuned on Indonesian academic journals": "Galuh/id-journal-gpt2" } headers = {} @st.cache(show_spinner=False, persist=True) def load_gpt(model_type): model = GPT2LMHeadModel.from_pretrained(MODELS[model_type]) return model @st.cache(show_spinner=False, persist=True, hash_funcs={transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer: lambda _: None}) def load_gpt_tokenizer(model_type): tokenizer = GPT2Tokenizer.from_pretrained(MODELS[model_type]) return tokenizer def get_image(text: str): url = "https://wikisearch.uncool.ai/get_image/" try: payload = { "text": text, "image_width": 400 } data = json.dumps(payload) response = requests.request("POST", url, headers=headers, data=data) print(response.content) image = json.loads(response.content.decode("utf-8"))["url"] except: image = "" return image st.set_page_config(page_title="Indonesian GPT-2 Demo") st.title("Indonesian GPT-2") ft_model = fasttext.load_model('lid.176.ftz') # Sidebar st.sidebar.image(LOGO) st.sidebar.subheader("Configurable parameters") max_len = st.sidebar.number_input( "Maximum length", value=100, help="The maximum length of the sequence to be generated." ) temp = st.sidebar.slider( "Temperature", value=1.0, min_value=0.0, max_value=100.0, help="The value used to module the next token probabilities." ) top_k = st.sidebar.number_input( "Top k", value=50, help="The number of highest probability vocabulary tokens to keep for top-k-filtering." ) top_p = st.sidebar.number_input( "Top p", value=1.0, help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation." ) st.markdown( """ This demo uses the [small](https://huggingface.co/flax-community/gpt2-small-indonesian) and [medium](https://huggingface.co/flax-community/gpt2-medium-indonesian) Indonesian GPT2 model trained on the Indonesian [Oscar](https://huggingface.co/datasets/oscar), [MC4](https://huggingface.co/datasets/mc4) and [Wikipedia](https://huggingface.co/datasets/wikipedia) dataset. We created it as part of the [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/). The demo supports "multi language" ;-), feel free to try a prompt on your language. We are also experimenting with the sentence based image search using Wikipedia passages encoded with distillbert, and search the encoded sentence in the encoded passages using Facebook's Faiss. """ ) model_name = st.selectbox('Model',(['GPT-2 Small', 'GPT-2 Medium', 'GPT-2 Small finetuned on Indonesian academic journals'])) if model_name in ["GPT-2 Small", "GPT-2 Medium"]: prompt_group_name = "GPT-2" elif model_name in ["GPT-2 Small finetuned on Indonesian academic journals"]: prompt_group_name = "Indonesian Journals" session_state = SessionState.get(prompt=None, prompt_box=None, text=None) ALL_PROMPTS = list(PROMPT_LIST[prompt_group_name].keys())+["Custom"] session_state.prompt = st.selectbox('Prompt', ALL_PROMPTS, index=len(ALL_PROMPTS)-1) if session_state.prompt == "Custom": session_state.prompt_box = "Enter your text here" else: session_state.prompt_box = random.choice(PROMPT_LIST[prompt_group_name][session_state.prompt]) session_state.text = st.text_area("Enter text", session_state.prompt_box) if st.button("Run"): with st.spinner(text="Getting results..."): lang_predictions, lang_probability = ft_model.predict(session_state.text.replace("\n", " "), k=3) if "__label__id" in lang_predictions: lang = "id" else: lang = lang_predictions[0].replace("__label__", "") text = translate(session_state.text, "id", lang) st.subheader("Result") model = load_gpt(model_name) tokenizer = load_gpt_tokenizer(model_name) input_ids = tokenizer.encode(text, return_tensors='pt') output = model.generate(input_ids=input_ids, max_length=max_len, temperature=temp, top_k=top_k, top_p=top_p, repetition_penalty=2.0) text = tokenizer.decode(output[0], skip_special_tokens=True) st.write(text.replace("\n", " \n")) st.text("Translation") translation = translate(text, "en", "id") if lang == "id": st.write(translation.replace("\n", " \n")) else: st.write(translate(text, lang, "id").replace("\n", " \n")) image_cat = "https://media.giphy.com/media/vFKqnCdLPNOKc/giphy.gif" image = get_image(translation.replace("\"", "'")) if image is not "": st.image(image, width=400) else: # display cat image if no image found st.image(image_cat, width=400)