#!/usr/bin/env python # coding: utf-8 # Uncomment to run on cpu #import os #os.environ["JAX_PLATFORM_NAME"] = "cpu" import random import jax import flax.linen as nn from flax.training.common_utils import shard from flax.jax_utils import replicate, unreplicate from transformers import BartTokenizer, FlaxBartForConditionalGeneration from PIL import Image import numpy as np import matplotlib.pyplot as plt from dalle_mini.vqgan_jax.modeling_flax_vqgan import VQModel from dalle_mini.model import CustomFlaxBartForConditionalGeneration import gradio as gr DALLE_REPO = 'flax-community/dalle-mini' DALLE_COMMIT_ID = '4d34126d0df8bc4a692ae933e3b902a1fa8b6114' VQGAN_REPO = 'flax-community/vqgan_f16_16384' VQGAN_COMMIT_ID = '90cc46addd2dd8f5be21586a9a23e1b95aa506a9' tokenizer = BartTokenizer.from_pretrained(DALLE_REPO, revision=DALLE_COMMIT_ID) model = CustomFlaxBartForConditionalGeneration.from_pretrained(DALLE_REPO, revision=DALLE_COMMIT_ID) vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID) def custom_to_pil(x): x = np.clip(x, 0., 1.) x = (255*x).astype(np.uint8) x = Image.fromarray(x) if not x.mode == "RGB": x = x.convert("RGB") return x def generate(input, rng, params): return model.generate( **input, max_length=257, num_beams=1, do_sample=True, prng_key=rng, eos_token_id=50000, pad_token_id=50000, params=params, ) def get_images(indices, params): return vqgan.decode_code(indices, params=params) def plot_images(images): fig = plt.figure(figsize=(40, 20)) columns = 4 rows = 2 plt.subplots_adjust(hspace=0, wspace=0) for i in range(1, columns*rows +1): fig.add_subplot(rows, columns, i) plt.imshow(images[i-1]) plt.gca().axes.get_yaxis().set_visible(False) plt.show() def stack_reconstructions(images): w, h = images[0].size[0], images[0].size[1] img = Image.new("RGB", (len(images)*w, h)) for i, img_ in enumerate(images): img.paste(img_, (i*w,0)) return img p_generate = jax.pmap(generate, "batch") p_get_images = jax.pmap(get_images, "batch") bart_params = replicate(model.params) vqgan_params = replicate(vqgan.params) # ## CLIP Scoring from transformers import CLIPProcessor, FlaxCLIPModel clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32") print("Initialize FlaxCLIPModel") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") print("Initialize CLIPProcessor") def hallucinate(prompt, num_images=64): prompt = [prompt] * jax.device_count() inputs = tokenizer(prompt, return_tensors='jax', padding="max_length", truncation=True, max_length=128).data inputs = shard(inputs) all_images = [] for i in range(num_images // jax.device_count()): key = random.randint(0, 1e7) rng = jax.random.PRNGKey(key) rngs = jax.random.split(rng, jax.local_device_count()) indices = p_generate(inputs, rngs, bart_params).sequences indices = indices[:, :, 1:] images = p_get_images(indices, vqgan_params) images = np.squeeze(np.asarray(images), 1) for image in images: all_images.append(custom_to_pil(image)) return all_images def clip_top_k(prompt, images, k=8): inputs = processor(text=prompt, images=images, return_tensors="np", padding=True) outputs = clip(**inputs) logits = outputs.logits_per_text scores = np.array(logits[0]).argsort()[-k:][::-1] return [images[score] for score in scores] def compose_predictions(images, caption=None): increased_h = 0 if caption is None else 48 w, h = images[0].size[0], images[0].size[1] img = Image.new("RGB", (len(images)*w, h + increased_h)) for i, img_ in enumerate(images): img.paste(img_, (i*w, increased_h)) if caption is not None: draw = ImageDraw.Draw(img) font = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40) draw.text((20, 3), caption, (255,255,255), font=font) return img def top_k_predictions(prompt, num_candidates=32, k=8): images = hallucinate(prompt, num_images=num_candidates) images = clip_top_k(prompt, images, k=k) return images def run_inference(prompt, num_images=32, num_preds=8): images = top_k_predictions(prompt, num_candidates=num_images, k=num_preds) predictions = compose_predictions(images) output_title = f"""
Best predictions
We asked our model to generate 32 candidates for your prompt:
{prompt}
We then used a pre-trained CLIP model to score them according to the similarity of the text and the image representations.
This is the result:
""" output_description = """Read more about the process in our report.
Created with DALLE路mini
""" return (output_title, predictions, output_description) outputs = [ gr.outputs.HTML(label=""), # To be used as title gr.outputs.Image(label=''), gr.outputs.HTML(label=""), # Additional text that appears in the screenshot ] description = """ Welcome to our demo of DALL路E-mini. This project was created on TPU v3-8s during the 馃 Flax / JAX Community Week. It reproduces the essential characteristics of OpenAI's DALL路E, at a fraction of the size. Please, write what you would like the model to generate, or select one of the examples below. """ gr.Interface(run_inference, inputs=[gr.inputs.Textbox(label='Prompt')], #, gr.inputs.Slider(1,64,1,8, label='Candidates to generate'), gr.inputs.Slider(1,8,1,1, label='Best predictions to show')], outputs=outputs, title='DALL路E mini', description=description, article="DALLE路mini by Boris Dayma et al. | GitHub
", layout='vertical', theme='huggingface', examples=[['an armchair in the shape of an avocado'], ['snowy mountains by the sea']], allow_flagging=False, live=False, # server_port=8999 ).launch()