# coding=utf-8 # Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team and the DalleBart team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DalleBart model. """ import math import os from functools import partial from pickle import UnpicklingError from typing import Optional, Tuple, Union import flax.linen as nn import jax import jax.numpy as jnp import msgpack.exceptions from flax.core.frozen_dict import unfreeze from flax.linen import make_causal_mask from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from transformers.configuration_utils import PretrainedConfig from transformers.file_utils import ( FLAX_WEIGHTS_NAME, WEIGHTS_NAME, cached_path, hf_bucket_url, is_offline_mode, is_remote_url, ) from transformers.modeling_flax_outputs import ( FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, ) from transformers.modeling_flax_utils import ACT2FN from transformers.models.bart.modeling_flax_bart import ( FlaxBartAttention, FlaxBartDecoder, FlaxBartDecoderLayer, FlaxBartDecoderLayerCollection, FlaxBartEncoder, FlaxBartEncoderLayer, FlaxBartEncoderLayerCollection, FlaxBartForConditionalGeneration, FlaxBartForConditionalGenerationModule, FlaxBartModule, FlaxBartPreTrainedModel, ) from transformers.utils import logging from .configuration import DalleBartConfig from .utils import PretrainedFromWandbMixin logger = logging.get_logger(__name__) class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length """ def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: # used only in decoder self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" ) class FlaxBartEncoderLayer(FlaxBartEncoderLayer): """ Edits: - no bias - use custom FlaxBartAttention """ def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxBartAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, bias=False, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): """ Edits: - use custom FlaxBartEncoderLayer - allow Gradient Checkpointing (nn.remat) """ def setup(self): layer_module = ( nn.remat(FlaxBartEncoderLayer) if self.config.gradient_checkpointing else FlaxBartEncoderLayer ) self.layers = [ layer_module(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop class FlaxBartDecoderLayer(FlaxBartDecoderLayer): """ Edits: - no bias - uses custom FlaxBartAttention """ def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxBartAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, bias=False, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxBartAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, bias=False, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): """ Edits: - use custom FlaxBartDecoderLayer - allow Gradient Checkpointing (nn.remat) """ def setup(self): layer_module = ( nn.remat(FlaxBartDecoderLayer) if self.config.gradient_checkpointing else FlaxBartDecoderLayer ) self.layers = [ layer_module(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop class FlaxBartEncoder(FlaxBartEncoder): """ Edits: - offset set to 0 (no padding token) - use max_text_length instead of max_position_embeddings - use custom FlaxBartEncoderLayerCollection - embed_tokens cannot be None (issue at compile time) """ def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 0 self.embed_positions = nn.Embed( self.config.max_text_length + self.offset, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) class FlaxBartDecoder(FlaxBartDecoder): """ Edits: - offset set to 0 (no padding token) - use image_length instead of max_position_embeddings - use custom FlaxBartDecoderLayerCollection - embed_tokens cannot be None (issue at compile time) """ def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.embed_scale = ( math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 ) # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 0 self.embed_positions = nn.Embed( self.config.image_length + self.offset, # image length for BOS embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) class FlaxBartModule(FlaxBartModule): """ Edits - use custom FlaxBartEncoder & FlaxBartDecoder - use separate embeddings for Encoder & Decoder """ def setup(self): encoder_embed_tokens = nn.Embed( self.config.encoder_vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) decoder_embed_tokens = nn.Embed( self.config.image_vocab_size + 1, # image vocab size + 1 for BOS self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.encoder = FlaxBartEncoder( self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens ) self.decoder = FlaxBartDecoder( self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens ) class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): """ Edits: - added num_params property - config_class replaced to DalleBartConfig - __init__ accepts abstract_init which does uses parameter shape to initialize the model - init weights on CPU with `load_on_cpu` - restore weights on CPU with custom `from_pretrained` """ config_class = DalleBartConfig def __init__( self, config: DalleBartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, abstract_init: bool = False, load_on_cpu: bool = False, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) # adapted from HuggingFace FlaxPreTrainedModel if config is None: raise ValueError("config cannot be None") if module is None: raise ValueError("module cannot be None") # Those are private to be exposed as typed property on derived classes. self._config = config self._module = module # Those are public as their type is generic to every derived classes. self.key = PRNGKey(seed) self.dtype = dtype # init weights on CPU if load_on_cpu: # init weights on CPU init_fn = jax.jit(self.init_weights, static_argnums=(1,), backend="cpu") else: init_fn = self.init_weights # randomly initialized parameters random_params = self.init_weights(self.key, input_shape) if abstract_init: # only set shape and dtype, load parameters separately init_fn = partial(init_fn, input_shape=input_shape) random_params = jax.eval_shape(init_fn, self.key) else: random_params = init_fn(self.key, input_shape) # save required_params as set self._required_params = set(flatten_dict(unfreeze(random_params)).keys()) self.params = random_params @property def num_params(self): num_params = jax.tree_map( lambda param: param.size, flatten_dict(unfreeze(self.params)) ).values() return sum(list(num_params)) @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], dtype: jnp.dtype = jnp.float32, *model_args, **kwargs, ): config = kwargs.pop("config", None) cache_dir = kwargs.pop("cache_dir", None) from_pt = kwargs.pop("from_pt", False) ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) use_auth_token = kwargs.pop("use_auth_token", None) revision = kwargs.pop("revision", None) from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) user_agent = { "file_type": "model", "framework": "flax", "from_auto_class": from_auto_class, } if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True # Load config if we don't provide a configuration if not isinstance(config, PretrainedConfig): config_path = ( config if config is not None else pretrained_model_name_or_path ) config, model_kwargs = cls.config_class.from_pretrained( config_path, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, use_auth_token=use_auth_token, revision=revision, _from_auto=from_auto_class, _from_pipeline=from_pipeline, **kwargs, ) else: model_kwargs = kwargs # Add the dtype to model_kwargs model_kwargs["dtype"] = dtype # Load model if pretrained_model_name_or_path is not None: if os.path.isdir(pretrained_model_name_or_path): if from_pt and os.path.isfile( os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) ): # Load from a PyTorch checkpoint archive_file = os.path.join( pretrained_model_name_or_path, WEIGHTS_NAME ) elif os.path.isfile( os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME) ): # Load from a Flax checkpoint archive_file = os.path.join( pretrained_model_name_or_path, FLAX_WEIGHTS_NAME ) else: raise EnvironmentError( f"Error no file named {[FLAX_WEIGHTS_NAME, WEIGHTS_NAME]} found in directory " f"{pretrained_model_name_or_path} or `from_pt` set to False" ) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url( pretrained_model_name_or_path ): archive_file = pretrained_model_name_or_path else: archive_file = hf_bucket_url( pretrained_model_name_or_path, filename=WEIGHTS_NAME if from_pt else FLAX_WEIGHTS_NAME, revision=revision, ) # redirect to the cache, if necessary try: resolved_archive_file = cached_path( archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, ) except EnvironmentError as err: logger.error(err) msg = ( f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n" f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n" f" (make sure '{pretrained_model_name_or_path}' is not a path to a local directory with something else, in that case)\n\n" f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named {WEIGHTS_NAME}.\n\n" ) raise EnvironmentError(msg) if resolved_archive_file == archive_file: logger.info(f"loading weights file {archive_file}") else: logger.info( f"loading weights file {archive_file} from cache at {resolved_archive_file}" ) else: resolved_archive_file = None # init random models model = cls(config, *model_args, **model_kwargs) with open(resolved_archive_file, "rb") as state_f: try: state = from_bytes(cls, state_f.read()) except (UnpicklingError, msgpack.exceptions.ExtraData) as e: try: with open(resolved_archive_file) as f: if f.read().startswith("version"): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please install " "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder " "you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError( f"Unable to convert {archive_file} to Flax deserializable object. " ) # if model is base model only use model_prefix key if ( cls.base_model_prefix not in dict(model.params) and cls.base_model_prefix in state ): state = state[cls.base_model_prefix] # if model is head model and we are loading weights from base model # we initialize new params dict with base_model_prefix if ( cls.base_model_prefix in dict(model.params) and cls.base_model_prefix not in state ): state = {cls.base_model_prefix: state} # flatten dicts state = flatten_dict(state) random_state = flatten_dict(unfreeze(model.params)) missing_keys = model.required_params - set(state.keys()) unexpected_keys = set(state.keys()) - model.required_params # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not # matching the weights in the model. mismatched_keys = [] for key in state.keys(): if key in random_state and state[key].shape != random_state[key].shape: if ignore_mismatched_sizes: mismatched_keys.append( (key, state[key].shape, random_state[key].shape) ) state[key] = random_state[key] else: raise ValueError( f"Trying to load the pretrained weight for {key} failed: checkpoint has shape " f"{state[key].shape} which is incompatible with the model shape {random_state[key].shape}. " "Using `ignore_mismatched_sizes=True` if you really want to load this checkpoint inside this " "model." ) # add missing keys as random parameters for missing_key in missing_keys: state[missing_key] = random_state[missing_key] # remove unexpected keys to not be saved again for unexpected_key in unexpected_keys: del state[unexpected_key] if len(unexpected_keys) > 0: logger.warning( f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when " f"initializing {model.__class__.__name__}: {unexpected_keys}\n" f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task " f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n" f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect " f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." ) else: logger.info( f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n" ) if len(missing_keys) > 0: logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " f"and are newly initialized: {missing_keys}\n" f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) elif len(mismatched_keys) == 0: logger.info( f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n" f"If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {model.__class__.__name__} for predictions without further training." ) if len(mismatched_keys) > 0: mismatched_warning = "\n".join( [ f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" for key, shape1, shape2 in mismatched_keys ] ) logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " f"and are newly initialized because the shapes did not match:\n{mismatched_warning}\n" f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) # set correct parameters model.params = unflatten_dict(state) return model class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule): """ Edits: - no bias - lm_head set to image_vocab_size + 1 (for BOS) - uses custom FlaxBartModule """ def setup(self): self.model = FlaxBartModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.config.image_vocab_size + 1, # image vocab size + 1 for BOS to have same size as decoder inputs (for sharding) use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply( {"params": {"kernel": shared_embedding.T}}, hidden_states ) else: lm_logits = self.lm_head(hidden_states) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) class DalleBart( PretrainedFromWandbMixin, FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration ): """ Edits: - renamed from FlaxBartForConditionalGeneration - uses custom FlaxBartPreTrainedModel - uses custom FlaxBartForConditionalGenerationModule - no bias in decode method - custom prepare_inputs_for_generation using "max_length - 1" to avoid issues related to position embedding during model.generate() """ module_class = FlaxBartForConditionalGenerationModule def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.return_dict ) encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError( "Make sure to provide `decoder_position_ids` when passing `past_key_values`." ) decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBartAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward( module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ): decoder_module = module._get_decoder_module() outputs = decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables["params"]["shared"][ "embedding" ] lm_logits = module.lm_head.apply( {"params": {"kernel": shared_embedding.T}}, hidden_states ) else: lm_logits = module.lm_head(hidden_states) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None, decoder_attention_mask: Optional[jnp.DeviceArray] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length - 1, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length - 1), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice( extended_attention_mask, decoder_attention_mask, (0, 0) ) else: position_ids = jnp.broadcast_to( jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length) ) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, }