# coding=utf-8 # Copyright 2021-2022 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team and & DALLĀ·E Mini team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DalleBart model. """ import math import os from functools import partial from pickle import UnpicklingError from typing import Any, Dict, Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp import msgpack.exceptions from flax.core.frozen_dict import unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.linear import PrecisionLike from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from transformers.configuration_utils import PretrainedConfig from transformers.file_utils import ( FLAX_WEIGHTS_NAME, WEIGHTS_NAME, cached_path, hf_bucket_url, is_offline_mode, is_remote_url, ) from transformers.generation_flax_utils import FlaxSampleOutput from transformers.modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, ) from transformers.modeling_flax_utils import ACT2FN from transformers.models.bart.modeling_flax_bart import ( FlaxBartAttention, FlaxBartDecoder, FlaxBartEncoder, FlaxBartForConditionalGeneration, FlaxBartForConditionalGenerationModule, FlaxBartModule, FlaxBartPreTrainedModel, ) from transformers.utils import logging from .configuration import DalleBartConfig from .utils import PretrainedFromWandbMixin logger = logging.get_logger(__name__) remat = nn_partitioning.remat # deepnet initialization def deepnet_init(gain=1): init = jax.nn.initializers.glorot_normal() def _init(*args, **kwargs): return gain * init(*args, **kwargs) return _init # deepnet gain deepnet_gain = { "encoder": { "alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625, "beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625, }, "decoder": { "alpha": lambda config: (3 * config.decoder_layers) ** 0.25, "beta": lambda config: (12 * config.decoder_layers) ** -0.25, }, } class RMSNorm(nn.Module): """ From "Root Mean Square Layer Normalization" by https://arxiv.org/abs/1910.07467 Adapted from flax.linen.LayerNorm """ epsilon: float = 1e-6 dtype: Any = jnp.float32 param_dtype: Any = jnp.float32 use_scale: bool = True scale_init: Any = jax.nn.initializers.ones @nn.compact def __call__(self, x): reduction_axes = (-1,) feature_axes = (-1,) rms_sq = self._compute_rms_sq(x, reduction_axes) return self._normalize( self, x, rms_sq, reduction_axes, feature_axes, self.dtype, self.param_dtype, self.epsilon, self.use_scale, self.scale_init, ) def _compute_rms_sq(self, x, axes): x = jnp.asarray(x, jnp.promote_types(jnp.float32, jnp.result_type(x))) rms_sq = jnp.mean(jax.lax.square(x), axes) return rms_sq def _normalize( self, mdl, x, rms_sq, reduction_axes, feature_axes, dtype, param_dtype, epsilon, use_scale, scale_init, ): reduction_axes = nn.normalization._canonicalize_axes(x.ndim, reduction_axes) feature_axes = nn.normalization._canonicalize_axes(x.ndim, feature_axes) stats_shape = list(x.shape) for axis in reduction_axes: stats_shape[axis] = 1 rms_sq = rms_sq.reshape(stats_shape) feature_shape = [1] * x.ndim reduced_feature_shape = [] for ax in feature_axes: feature_shape[ax] = x.shape[ax] reduced_feature_shape.append(x.shape[ax]) mul = lax.rsqrt(rms_sq + epsilon) if use_scale: scale = mdl.param( "scale", scale_init, reduced_feature_shape, param_dtype ).reshape(feature_shape) mul *= scale y = mul * x return jnp.asarray(y, dtype) def norm(type, *args, **kwargs): if type == "rmsnorm": return RMSNorm(*args, **kwargs) elif type == "layernorm": return nn.LayerNorm(*args, **kwargs) else: raise ValueError(f"Unknown norm type {type}") def dot_product_attention_weights( query: Any, key: Any, bias: Optional[Any] = None, mask: Optional[Any] = None, broadcast_dropout: bool = True, dropout_rng: Optional[PRNGKey] = None, dropout_rate: float = 0.0, deterministic: bool = False, dtype: Any = jnp.float32, precision: PrecisionLike = None, sinkhorn_iters: int = 1, ): """ Computes dot-product attention weights given query and key. Adapted from flax.linen.attention.dot_product_attention_weights" """ assert query.ndim == key.ndim, "q, k must have same rank." assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match." assert query.shape[-2] == key.shape[-2], "q, k num_heads must match." assert query.shape[-1] == key.shape[-1], "q, k depths must match." # calculate attention matrix depth = query.shape[-1] query = query / jnp.sqrt(depth).astype(dtype) # attn weight shape is (batch..., num_heads, q_length, kv_length) attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision) # apply attention bias: masking, dropout, proximity bias, etc. if bias is not None: attn_weights = attn_weights + bias # apply attention mask if mask is not None: big_neg = jnp.finfo(dtype).min attn_weights = jnp.where(mask, attn_weights, big_neg) # normalize the attention weights attn_weights = jax.nn.softmax(attn_weights).astype(dtype) for i in range(sinkhorn_iters - 1): axis = -2 if i % 2 == 0 else -1 attn_weights /= 1e-8 + jnp.sum(attn_weights, axis=axis, keepdims=True) # apply attention dropout if not deterministic and dropout_rate > 0.0: keep_prob = 1.0 - dropout_rate if broadcast_dropout: # dropout is broadcast across the batch + head dimensions dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:] keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape) else: keep = jax.random.bernoulli(dropout_rng, keep_prob, attn_weights.shape) multiplier = keep.astype(attn_weights.dtype) / jnp.asarray( keep_prob, dtype=dtype ) attn_weights = attn_weights * multiplier return attn_weights class FlaxBartAttention(FlaxBartAttention): """ Edits: - causal mask is used only in decoder and considers image_length - scale attention heads per NormFormer paper """ is_encoder: bool = False def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, ) gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) self.q_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.k_proj = dense( kernel_init=deepnet_init() if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.v_proj = dense( kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.out_proj = dense( kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std) ) self.dropout_layer = nn.Dropout(rate=self.dropout) if self.config.use_head_scale: self.head_scale = self.param( "head_scale", jax.nn.initializers.ones, (1, 1, self.num_heads, 1) ) if self.config.use_cosine_attention: self.tau = self.param( "tau", jax.nn.initializers.constant(self.config.tau_init), (1, self.num_heads, 1, 1), ) if self.causal: # used only in decoder self.causal_mask = make_causal_mask( jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool" ) def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to( causal_mask, (batch_size,) + causal_mask.shape[1:] ) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape ) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") if self.config.use_cosine_attention: # normalize q and k query_states = query_states / ( jnp.linalg.norm(query_states, axis=-1, keepdims=True) + 1e-8 ) key_states = key_states / ( jnp.linalg.norm(key_states, axis=-1, keepdims=True) + 1e-8 ) attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, sinkhorn_iters=self.config.sinkhorn_iters, ) if self.config.use_cosine_attention: # divide by tau attn_weights = attn_weights / jnp.maximum(self.tau, 0.01) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) if self.config.use_head_scale: # per Normformer attn_output = attn_output * self.head_scale attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights class GLU(nn.Module): """From "GLU Variants Improve Transformer" by https://arxiv.org/abs/2002.05202""" config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) if self.config.ln_positions in ["normformer", "cogview", "preln"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) w = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) w = ACT2FN[self.config.activation_function](w) v = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = w * v if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x class FFN(nn.Module): """Simple FFN layer""" config: DalleBartConfig ffn_dim: int embed_dim: int dtype: jnp.dtype = jnp.float32 is_encoder: bool = False @nn.compact def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"]( self.config ) if self.config.ln_positions in ["normformer", "cogview", "preln"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dense( self.ffn_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) x = ACT2FN[self.config.activation_function](x) if self.config.ln_positions in ["normformer"]: x = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(x) x = nn.Dropout(rate=self.config.activation_dropout)( x, deterministic=deterministic ) x = nn.Dense( self.embed_dim, dtype=self.dtype, use_bias=False, kernel_init=deepnet_init(gain) if self.config.use_deepnet_scaling else jax.nn.initializers.normal(self.config.init_std), )(x) if self.config.ln_positions in ["swinv2", "cogview"]: x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x) x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic) return x class FlaxBartEncoderLayer(nn.Module): """ Edits: - no bias - use custom FlaxBartAttention """ config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = True @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: res_gain = ( deepnet_gain["encoder"]["alpha"](self.config) if self.config.use_deepnet_scaling else 1 ) embed_dim = self.config.d_model residual = hidden_states if self.config.ln_positions in ["normformer", "cogview", "preln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) hidden_states, attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, bias=False, dtype=self.dtype, is_encoder=True, )(hidden_states=hidden_states, attention_mask=attention_mask) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.encoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=True, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["postln"]: use_scale = ( self.use_scale or self.config.ln_positions == "postln" or self.config.force_ln_scale ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class FlaxBartDecoderLayer(nn.Module): """ Edits: - no bias - use custom FlaxBartAttention """ config: DalleBartConfig dtype: jnp.dtype = jnp.float32 add_norm: bool = False use_scale: bool = False @nn.compact def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: res_gain = ( deepnet_gain["decoder"]["alpha"](self.config) if self.config.use_deepnet_scaling else 1 ) embed_dim = self.config.d_model residual = hidden_states # Self Attention if self.config.ln_positions in ["normformer", "cogview", "preln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) hidden_states, attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, bias=False, dtype=self.dtype, is_encoder=False, )( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache, ) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)( hidden_states ) # Cross Attention cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states if self.config.ln_positions in ["normformer", "cogview", "preln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=self.config.force_ln_scale, )(hidden_states) hidden_states, cross_attn_weights = FlaxBartAttention( config=self.config, embed_dim=embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, bias=False, dtype=self.dtype, is_encoder=False, )( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) if self.config.ln_positions in ["normformer", "swinv2", "cogview"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) hidden_states = nn.Dropout(rate=self.config.dropout)( hidden_states, deterministic=deterministic ) hidden_states = residual * res_gain + hidden_states if self.config.ln_positions in ["postln"]: hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 )(hidden_states) # Feed forward residual = hidden_states ff_block = ( GLU( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) if self.config.use_glu else FFN( config=self.config, ffn_dim=self.config.decoder_ffn_dim, embed_dim=embed_dim, dtype=self.dtype, is_encoder=False, ) ) hidden_states = ff_block(hidden_states, deterministic=deterministic) hidden_states = residual * res_gain + hidden_states if self.add_norm or self.config.ln_positions in ["postln"]: use_scale = ( self.use_scale or self.config.ln_positions == "postln" or self.config.force_ln_scale ) hidden_states = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05, use_scale=use_scale, )(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights, cross_attn_weights) return outputs class FlaxBartEncoderLayerCollection(nn.Module): config: DalleBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartEncoderLayer - allow Gradient Checkpointing (nn.remat) """ @nn.compact def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None n_layers = self.config.encoder_layers layer = ( remat(FlaxBartEncoderLayer, static_argnums=(2, 3)) if self.config.gradient_checkpointing else FlaxBartEncoderLayer ) for i in range(n_layers): if output_hidden_states: all_hidden_states += (hidden_states,) # final layernorm on the output of the last layer # or every 6 layers for Swin v2 add_norm = ( self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) ) or (self.config.use_final_ln_encoder and (i == n_layers - 1)) # we don't need to scale the norm for the last layer use_scale = i != n_layers - 1 layer_outputs = layer( self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale )( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) # add hidden states from the last layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [ hidden_states, all_hidden_states, all_self_attns, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, ) class FlaxBartDecoderLayerCollection(nn.Module): config: DalleBartConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation """ Edits: - use custom FlaxBartDecoderLayer - allow Gradient Checkpointing (nn.remat) """ @nn.compact def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = ( () if (output_attentions and encoder_hidden_states is not None) else None ) n_layers = self.config.decoder_layers layer = ( remat(FlaxBartDecoderLayer, static_argnums=(4, 5, 6)) if self.config.gradient_checkpointing else FlaxBartDecoderLayer ) for i in range(n_layers): if output_hidden_states: all_hidden_states += (hidden_states,) # final layernorm on the output of the last layer # or every 6 layers for Swin v2 add_norm = ( self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) ) or (self.config.use_final_ln_decoder and (i == n_layers - 1)) # we don't need to scale the norm for the last layer use_scale = i != n_layers - 1 layer_outputs = layer( self.config, dtype=self.dtype, add_norm=add_norm, use_scale=use_scale )( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, init_cache, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [ hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, ] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class FlaxBartEncoder(FlaxBartEncoder): """ Edits: - offset set to 0 (no padding token) - use max_text_length instead of max_position_embeddings - use custom FlaxBartEncoderLayerCollection - embed_tokens cannot be None (issue at compile time) """ def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 0 self.embed_positions = nn.Embed( self.config.max_text_length + self.offset, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 ) class FlaxBartDecoder(FlaxBartDecoder): """ Edits: - offset set to 0 (no padding token) - use image_length instead of max_position_embeddings - use custom FlaxBartDecoderLayerCollection - embed_tokens cannot be None (issue at compile time) """ def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.embed_scale = ( math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 ) # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 0 self.embed_positions = nn.Embed( self.config.image_length + self.offset, # image length for BOS embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = norm( self.config.ln_type, dtype=self.dtype, epsilon=1e-05 ) class FlaxBartModule(FlaxBartModule): """ Edits - use custom FlaxBartEncoder & FlaxBartDecoder - use separate embeddings for Encoder & Decoder """ def setup(self): encoder_embed_tokens = nn.Embed( self.config.encoder_vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) decoder_embed_tokens = nn.Embed( self.config.image_vocab_size + 1, # image vocab size + 1 for BOS self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.encoder = FlaxBartEncoder( self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens ) self.decoder = FlaxBartDecoder( self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens ) class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): """ Edits: - added num_params property - config_class replaced to DalleBartConfig - __init__ accepts abstract_init which does uses parameter shape to initialize the model - init weights on CPU with `load_on_cpu` - restore weights on CPU with custom `from_pretrained` """ config_class = DalleBartConfig def __init__( self, config: DalleBartConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, abstract_init: bool = False, load_on_cpu: bool = False, init_weights: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) # adapted from HuggingFace FlaxPreTrainedModel if config is None: raise ValueError("config cannot be None") if module is None: raise ValueError("module cannot be None") # Those are private to be exposed as typed property on derived classes. self._config = config self._module = module # Those are public as their type is generic to every derived classes. self.key = PRNGKey(seed) self.dtype = dtype if init_weights: # get shape of params only random_params = self.init_weights( self.key, input_shape, abstract_init=abstract_init, load_on_cpu=load_on_cpu, ) # save required_params as set self._required_params = set(flatten_dict(unfreeze(random_params)).keys()) self.params = random_params def init_weights( self, rng=None, input_shape=(1, 1), abstract_init=False, load_on_cpu=False ): if rng is None: rng = self.key init_fn = super().init_weights if load_on_cpu: init_fn = jax.jit(init_fn, static_argnums=(1,), backend="cpu") if abstract_init: # only set shape and dtype, load parameters separately init_fn = partial(init_fn, input_shape=input_shape) params = jax.eval_shape(init_fn, rng) else: params = init_fn(rng, input_shape) return params @property def num_params(self): num_params = jax.tree_map( lambda param: param.size, flatten_dict(unfreeze(self.params)) ).values() return sum(list(num_params)) @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], dtype: jnp.dtype = jnp.float32, *model_args, **kwargs, ): config = kwargs.pop("config", None) cache_dir = kwargs.pop("cache_dir", None) from_pt = kwargs.pop("from_pt", False) ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) use_auth_token = kwargs.pop("use_auth_token", None) revision = kwargs.pop("revision", None) from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) user_agent = { "file_type": "model", "framework": "flax", "from_auto_class": from_auto_class, } if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True # Load config if we don't provide a configuration if not isinstance(config, PretrainedConfig): config_path = ( config if config is not None else pretrained_model_name_or_path ) config, model_kwargs = cls.config_class.from_pretrained( config_path, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, use_auth_token=use_auth_token, revision=revision, _from_auto=from_auto_class, _from_pipeline=from_pipeline, **kwargs, ) else: model_kwargs = kwargs # Add the dtype to model_kwargs model_kwargs["dtype"] = dtype # Load model if pretrained_model_name_or_path is not None: if os.path.isdir(pretrained_model_name_or_path): if from_pt and os.path.isfile( os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) ): # Load from a PyTorch checkpoint archive_file = os.path.join( pretrained_model_name_or_path, WEIGHTS_NAME ) elif os.path.isfile( os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME) ): # Load from a Flax checkpoint archive_file = os.path.join( pretrained_model_name_or_path, FLAX_WEIGHTS_NAME ) else: raise EnvironmentError( f"Error no file named {[FLAX_WEIGHTS_NAME, WEIGHTS_NAME]} found in directory " f"{pretrained_model_name_or_path} or `from_pt` set to False" ) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url( pretrained_model_name_or_path ): archive_file = pretrained_model_name_or_path else: archive_file = hf_bucket_url( pretrained_model_name_or_path, filename=WEIGHTS_NAME if from_pt else FLAX_WEIGHTS_NAME, revision=revision, ) # redirect to the cache, if necessary try: resolved_archive_file = cached_path( archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, ) except EnvironmentError as err: logger.error(err) msg = ( f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n" f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n" f" (make sure '{pretrained_model_name_or_path}' is not a path to a local directory with something else, in that case)\n\n" f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named {WEIGHTS_NAME}.\n\n" ) raise EnvironmentError(msg) if resolved_archive_file == archive_file: logger.info(f"loading weights file {archive_file}") else: logger.info( f"loading weights file {archive_file} from cache at {resolved_archive_file}" ) else: resolved_archive_file = None # init random models model = cls(config, *model_args, **model_kwargs) with open(resolved_archive_file, "rb") as state_f: try: state = from_bytes(cls, state_f.read()) except (UnpicklingError, msgpack.exceptions.ExtraData) as e: try: with open(resolved_archive_file) as f: if f.read().startswith("version"): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please install " "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder " "you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError( f"Unable to convert {archive_file} to Flax deserializable object. " ) # if model is base model only use model_prefix key if ( cls.base_model_prefix not in dict(model.params) and cls.base_model_prefix in state ): state = state[cls.base_model_prefix] # if model is head model and we are loading weights from base model # we initialize new params dict with base_model_prefix if ( cls.base_model_prefix in dict(model.params) and cls.base_model_prefix not in state ): state = {cls.base_model_prefix: state} # flatten dicts state = flatten_dict(state) random_state = flatten_dict(unfreeze(model.params)) missing_keys = model.required_params - set(state.keys()) unexpected_keys = set(state.keys()) - model.required_params # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not # matching the weights in the model. mismatched_keys = [] for key in state.keys(): if key in random_state and state[key].shape != random_state[key].shape: if ignore_mismatched_sizes: mismatched_keys.append( (key, state[key].shape, random_state[key].shape) ) state[key] = random_state[key] else: raise ValueError( f"Trying to load the pretrained weight for {key} failed: checkpoint has shape " f"{state[key].shape} which is incompatible with the model shape {random_state[key].shape}. " "Using `ignore_mismatched_sizes=True` if you really want to load this checkpoint inside this " "model." ) # add missing keys as random parameters for missing_key in missing_keys: state[missing_key] = random_state[missing_key] # remove unexpected keys to not be saved again for unexpected_key in unexpected_keys: del state[unexpected_key] if len(unexpected_keys) > 0: logger.warning( f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when " f"initializing {model.__class__.__name__}: {unexpected_keys}\n" f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task " f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n" f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect " f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." ) else: logger.info( f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n" ) if len(missing_keys) > 0: logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " f"and are newly initialized: {missing_keys}\n" f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) elif len(mismatched_keys) == 0: logger.info( f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n" f"If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {model.__class__.__name__} for predictions without further training." ) if len(mismatched_keys) > 0: mismatched_warning = "\n".join( [ f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" for key, shape1, shape2 in mismatched_keys ] ) logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " f"and are newly initialized because the shapes did not match:\n{mismatched_warning}\n" f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) # set correct parameters model.params = unflatten_dict(state) return model class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule): """ Edits: - no bias - lm_head set to image_vocab_size + 1 (for BOS) - uses custom FlaxBartModule """ def setup(self): self.model = FlaxBartModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.config.image_vocab_size + 1, # image vocab size + 1 for BOS to have same size as decoder inputs (for sharding) use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply( {"params": {"kernel": shared_embedding.T}}, hidden_states ) else: lm_logits = self.lm_head(hidden_states) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @flax.struct.dataclass class SampleState: cur_len: jnp.ndarray sequences: jnp.ndarray running_token: jnp.ndarray is_sent_finished: jnp.ndarray prng_key: jnp.ndarray model_kwargs: Dict[str, jnp.ndarray] model_kwargs_uncond: Dict[str, jnp.ndarray] class DalleBart( PretrainedFromWandbMixin, FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration ): """ Edits: - renamed from FlaxBartForConditionalGeneration - uses custom FlaxBartPreTrainedModel - uses custom FlaxBartForConditionalGenerationModule - no bias in decode method - custom prepare_inputs_for_generation using "max_length - 1" to avoid issues related to position embedding during model.generate() - custom generate method to allow super conditions """ module_class = FlaxBartForConditionalGenerationModule def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.return_dict ) encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError( "Make sure to provide `decoder_position_ids` when passing `past_key_values`." ) decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBartAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward( module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ): decoder_module = module._get_decoder_module() outputs = decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables["params"]["shared"][ "embedding" ] lm_logits = module.lm_head.apply( {"params": {"kernel": shared_embedding.T}}, hidden_states ) else: lm_logits = module.lm_head(hidden_states) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None, decoder_attention_mask: Optional[jnp.DeviceArray] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length - 1, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length - 1), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice( extended_attention_mask, decoder_attention_mask, (0, 0) ) else: position_ids = jnp.broadcast_to( jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length) ) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def generate( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, bos_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, decoder_start_token_id: Optional[int] = None, do_sample: Optional[bool] = None, prng_key: Optional[jnp.ndarray] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, temperature: Optional[float] = None, num_beams: Optional[int] = None, no_repeat_ngram_size: Optional[int] = None, min_length: Optional[int] = None, forced_bos_token_id: Optional[int] = None, forced_eos_token_id: Optional[int] = None, length_penalty: Optional[float] = None, early_stopping: Optional[bool] = None, trace: bool = True, params: Optional[Dict[str, jnp.ndarray]] = None, condition_scale: Optional[float] = 1.0, input_ids_uncond: Optional[jnp.ndarray] = None, attention_mask_uncond: Optional[jnp.ndarray] = None, **model_kwargs, ): """Edit: Allow super conditioning.""" # set init values max_length = max_length if max_length is not None else self.config.max_length bos_token_id = ( bos_token_id if bos_token_id is not None else self.config.bos_token_id ) pad_token_id = ( pad_token_id if pad_token_id is not None else self.config.pad_token_id ) eos_token_id = ( eos_token_id if eos_token_id is not None else self.config.eos_token_id ) decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id else self.config.decoder_start_token_id ) prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) if decoder_start_token_id is None and self.config.is_encoder_decoder: raise ValueError( "`decoder_start_token_id` has to be defined for encoder-decoder generation." ) do_sample = do_sample if do_sample is not None else self.config.do_sample num_beams = num_beams if num_beams is not None else self.config.num_beams if self.config.is_encoder_decoder: # add encoder_outputs to model_kwargs if model_kwargs.get("encoder_outputs") is None: model_kwargs_input = dict(model_kwargs) model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation( input_ids, params, {"attention_mask": attention_mask, **model_kwargs_input}, ) if condition_scale != 1.0: assert ( input_ids_uncond is not None ), "`input_ids_uncond` has to be defined for super conditioning." assert ( do_sample is True ), "`do_sample` has to be True for super conditioning." assert ( num_beams == 1 ), "`num_beams` has to be 1 for super conditioning." model_kwargs_uncond = ( self._prepare_encoder_decoder_kwargs_for_generation( input_ids_uncond, params, { "attention_mask": attention_mask_uncond, **model_kwargs_input, }, ) ) else: model_kwargs_uncond = None # prepare decoder_input_ids for generation input_ids = ( jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id ) if not do_sample and num_beams == 1: logits_processor = self._get_logits_processor( no_repeat_ngram_size, min_length, max_length, eos_token_id, forced_bos_token_id, forced_eos_token_id, ) return self._greedy_search( input_ids, max_length, pad_token_id, eos_token_id, logits_processor=logits_processor, trace=trace, params=params, model_kwargs=model_kwargs, ) elif do_sample and num_beams == 1: logits_warper = self._get_logits_warper( top_k=top_k, top_p=top_p, temperature=temperature ) logits_processor = self._get_logits_processor( no_repeat_ngram_size, min_length, max_length, eos_token_id, forced_bos_token_id, forced_eos_token_id, ) return self._sample( input_ids, max_length, pad_token_id, eos_token_id, prng_key, logits_warper=logits_warper, logits_processor=logits_processor, trace=trace, params=params, model_kwargs=model_kwargs, condition_scale=condition_scale, model_kwargs_uncond=model_kwargs_uncond, ) elif not do_sample and num_beams > 1: # broadcast input_ids & encoder_outputs input_ids = self._expand_to_num_beams(input_ids, num_beams=num_beams) if "encoder_outputs" in model_kwargs: model_kwargs["encoder_outputs"][ "last_hidden_state" ] = self._expand_to_num_beams( model_kwargs["encoder_outputs"]["last_hidden_state"], num_beams=num_beams, ) if "attention_mask" in model_kwargs: model_kwargs["attention_mask"] = self._expand_to_num_beams( model_kwargs["attention_mask"], num_beams=num_beams ) logits_processor = self._get_logits_processor( no_repeat_ngram_size, min_length, max_length, eos_token_id, forced_bos_token_id, forced_eos_token_id, ) return self._beam_search( input_ids, max_length, pad_token_id, eos_token_id, length_penalty=length_penalty, early_stopping=early_stopping, logits_processor=logits_processor, trace=trace, params=params, model_kwargs=model_kwargs, ) else: raise NotImplementedError("`Beam sampling is currently not implemented.") def _sample( self, input_ids: None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, prng_key: Optional[jnp.ndarray] = None, logits_processor=None, logits_warper=None, trace: bool = True, params: Optional[Dict[str, jnp.ndarray]] = None, model_kwargs: Optional[Dict[str, jnp.ndarray]] = None, condition_scale: float = 1.0, model_kwargs_uncond: Optional[Dict[str, jnp.ndarray]] = None, ): # init values max_length = max_length if max_length is not None else self.config.max_length pad_token_id = ( pad_token_id if pad_token_id is not None else self.config.pad_token_id ) eos_token_id = ( eos_token_id if eos_token_id is not None else self.config.eos_token_id ) prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0) batch_size, cur_len = input_ids.shape eos_token_id = jnp.array(eos_token_id) pad_token_id = jnp.array(pad_token_id) cur_len = jnp.array(cur_len) # per batch-item holding current token in loop. sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32) sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0)) # per batch-item state bit indicating if sentence has finished. is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_) # For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop # and pass it the `encoder_outputs`, which are part of the `model_kwargs`. model = self.decode if self.config.is_encoder_decoder else self # initialize model specific kwargs model_kwargs = self.prepare_inputs_for_generation( input_ids, max_length, **model_kwargs ) if condition_scale != 1.0: model_kwargs_uncond = self.prepare_inputs_for_generation( input_ids, max_length, **model_kwargs_uncond ) # initialize state state = SampleState( cur_len=cur_len, sequences=sequences, running_token=input_ids, is_sent_finished=is_sent_finished, prng_key=prng_key, model_kwargs=model_kwargs, model_kwargs_uncond=model_kwargs_uncond, ) def sample_search_cond_fn(state): """state termination condition fn.""" has_reached_max_length = state.cur_len == max_length all_sequence_finished = jnp.all(state.is_sent_finished) finish_generation = jnp.logical_or( has_reached_max_length, all_sequence_finished ) return ~finish_generation def sample_search_body_fn(state): """state update fn.""" prng_key, prng_key_next = jax.random.split(state.prng_key) model_outputs = model( state.running_token, params=params, **state.model_kwargs ) logits = model_outputs.logits[:, -1] # perform super conditioning # Source: @RiversHaveWings - https://twitter.com/RiversHaveWings/status/1478093658716966912?s=20&t=xdm-wZ61Wf7OLnE_NJHZ1w if condition_scale != 1.0: model_outputs_uncond = model( state.running_token, params=params, **state.model_kwargs_uncond ) logits_uncond = model_outputs_uncond.logits[:, -1] logits = logits_uncond + condition_scale * (logits - logits_uncond) else: model_outputs_uncond = None # apply min_length, ... logits = logits_processor(state.sequences, logits, state.cur_len) # apply top_k, top_k, temperature logits = logits_warper(logits, logits, state.cur_len) next_token = jax.random.categorical(prng_key, logits, axis=-1) next_is_sent_finished = state.is_sent_finished | ( next_token == eos_token_id ) next_token = ( next_token * ~next_is_sent_finished + pad_token_id * next_is_sent_finished ) next_token = next_token[:, None] next_sequences = lax.dynamic_update_slice( state.sequences, next_token, (0, state.cur_len) ) next_model_kwargs = self.update_inputs_for_generation( model_outputs, state.model_kwargs ) next_model_kwargs_uncond = ( self.update_inputs_for_generation( model_outputs_uncond, state.model_kwargs_uncond ) if condition_scale != 1.0 else None ) return SampleState( cur_len=state.cur_len + 1, sequences=next_sequences, running_token=next_token, is_sent_finished=next_is_sent_finished, model_kwargs=next_model_kwargs, model_kwargs_uncond=next_model_kwargs_uncond, prng_key=prng_key_next, ) # The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU if input_ids.shape[1] > 1: state = sample_search_body_fn(state) if not trace: state = self._run_loop_in_debug( sample_search_cond_fn, sample_search_body_fn, state ) else: state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state) return FlaxSampleOutput(sequences=state.sequences)