#!/usr/bin/env python # coding: utf-8 from PIL import Image import gradio as gr def compose_predictions(images, caption=None): increased_h = 0 if caption is None else 48 w, h = images[0].size[0], images[0].size[1] img = Image.new("RGB", (len(images)*w, h + increased_h)) for i, img_ in enumerate(images): img.paste(img_, (i*w, increased_h)) if caption is not None: draw = ImageDraw.Draw(img) font = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40) draw.text((20, 3), caption, (255,255,255), font=font) return img def compose_predictions_grid(images): cols = 4 rows = len(images) // cols w, h = images[0].size[0], images[0].size[1] img = Image.new("RGB", (w * cols, h * rows)) for i, img_ in enumerate(images): row = i // cols col = i % cols img.paste(img_, (w * col, h * row)) return img def top_k_predictions_real(prompt, num_candidates=32, k=8): images = hallucinate(prompt, num_images=num_candidates) images = clip_top_k(prompt, images, k=num_preds) return images def top_k_predictions(prompt, num_candidates=32, k=8): images = [] for i in range(k): image = Image.open(f"sample_images/image_{i}.jpg") images.append(image) return images def run_inference(prompt, num_images=32, num_preds=8): images = top_k_predictions(prompt, num_candidates=num_images, k=num_preds) predictions = compose_predictions(images) output_title = f"""

Best predictions

We asked our model to generate 32 candidates for your prompt:


    {prompt}
    

We then used a pre-trained CLIP model to score them according to the similarity of the text and the image representations.

This is the result:

""" output_description = """

Read more about the process in our report.

Created with DALLE路mini

""" return (output_title, predictions, output_description) outputs = [ gr.outputs.HTML(label=""), # To be used as title gr.outputs.Image(label=''), gr.outputs.HTML(label=""), # Additional text that appears in the screenshot ] description = """ Welcome to our demo of DALL路E-mini. This project was created on TPU v3-8s during the 馃 Flax / JAX Community Week. It reproduces the essential characteristics of OpenAI's DALL路E, at a fraction of the size. Please, write what you would like the model to generate, or select one of the examples below. """ gr.Interface(run_inference, inputs=[gr.inputs.Textbox(label='Prompt')], #, gr.inputs.Slider(1,64,1,8, label='Candidates to generate'), gr.inputs.Slider(1,8,1,1, label='Best predictions to show')], outputs=outputs, title='DALL路E mini', description=description, article="

DALLE路mini by Boris Dayma et al. | GitHub

", layout='vertical', theme='huggingface', examples=[['an armchair in the shape of an avocado'], ['snowy mountains by the sea']], allow_flagging=False, live=False, server_port=8999 ).launch( share=True # Creates temporary public link if true )