import streamlit as st from apps.utils import read_markdown from streamlit_tensorboard import st_tensorboard def app(state): st.write(read_markdown("intro.md")) st.write("## Methodology") st.write(read_markdown("pretraining.md")) st.image( "./misc/article/Multilingual-VQA.png", caption="Masked LM model for Image-text Pretraining.", ) st.write("**Training Logs**") st_tensorboard(logdir='./logs/pretrain_logs', port=6006) st.write(read_markdown("finetuning.md")) st.write(read_markdown("challenges.md")) st.write(read_markdown("limitations.md")) st.write(read_markdown("social_impact.md")) st.write(read_markdown("references.md")) st.write(read_markdown("checkpoints.md")) st.write(read_markdown("acknowledgements.md"))