import streamlit as st from apps.utils import read_markdown from streamlit_tensorboard import st_tensorboard from .utils import Toc def app(state): toc = Toc() st.info("Welcome to our Multilingual-VQA demo. Please use the navigation sidebar to move to our demo, or scroll below to read all about our project. 🤗") st.header("Table of contents") toc.placeholder() toc.header("Introduction and Motivation") st.write(read_markdown("intro/intro.md")) toc.subheader("Novel Contributions") st.write(read_markdown("intro/contributions.md")) toc.header("Methodology") toc.subheader("Pre-training") st.write(read_markdown("pretraining/intro.md")) # col1, col2 = st.beta_columns([5,5]) st.image( "./misc/article/Multilingual-VQA.png", caption="Masked LM model for Image-text Pre-training.", ) toc.subsubheader("Dataset") st.write(read_markdown("pretraining/data.md")) toc.subsubheader("Model") st.write(read_markdown("pretraining/model.md")) toc.subsubheader("Training Logs") st_tensorboard(logdir='./logs/pretrain_logs', port=6006) toc.subheader("Finetuning") toc.subsubheader("Dataset") st.write(read_markdown("finetuning/data.md")) toc.subsubheader("Model") st.write(read_markdown("finetuning/model.md")) toc.subsubheader("Training Logs") st_tensorboard(logdir='./logs/finetune_logs', port=6007) toc.header("Challenges and Technical Difficulties") st.write(read_markdown("challenges.md")) toc.header("Limitations") st.write(read_markdown("limitations.md")) toc.header("Conclusion, Future Work, and Social Impact") toc.subheader("Conclusion") st.write(read_markdown("conclusion.md")) toc.subheader("Future Work") st.write(read_markdown("future_work.md")) toc.subheader("Social Impact") st.write(read_markdown("social_impact.md")) toc.header("References") st.write(read_markdown("references.md")) toc.header("Checkpoints") st.write(read_markdown("checkpoints.md")) toc.subheader("Other Checkpoints") st.write(read_markdown("other_checkpoints.md")) toc.header("Acknowledgements") st.write(read_markdown("acknowledgements.md")) toc.generate()