from apps import mlm, vqa import os import streamlit as st from multiapp import MultiApp def read_markdown(path, parent="./sections/"): with open(os.path.join(parent, path)) as f: return f.read() def main(): st.set_page_config( page_title="Multilingual VQA", layout="wide", initial_sidebar_state="collapsed", page_icon="./misc/mvqa-logo-3-white.png", ) st.title("Multilingual Visual Question Answering") st.write( "[Gunjan Chhablani](https://huggingface.co/gchhablani), [Bhavitvya Malik](https://huggingface.co/bhavitvyamalik)" ) image_col, intro_col = st.beta_columns([3, 8]) image_col.image("./misc/mvqa-logo-3-white.png", use_column_width="always") intro_col.write(read_markdown("intro.md")) with st.beta_expander("Usage"): st.write(read_markdown("usage.md")) with st.beta_expander("Article"): st.write(read_markdown("abstract.md")) st.write(read_markdown("caveats.md")) st.write("## Methodology") col1, col2 = st.beta_columns([1,1]) col1.image( "./misc/article/Multilingual-VQA.png", caption="Masked LM model for Image-text Pretraining.", ) col2.markdown(read_markdown("pretraining.md")) st.markdown(read_markdown("finetuning.md")) st.write(read_markdown("challenges.md")) st.write(read_markdown("social_impact.md")) st.write(read_markdown("references.md")) st.write(read_markdown("checkpoints.md")) st.write(read_markdown("acknowledgements.md")) app = MultiApp() app.add_app("Visual Question Answering", vqa.app) app.add_app("Mask Filling", mlm.app) app.run() if __name__ == "__main__": main()