import functools import os import shutil import sys import git import gradio as gr import numpy as np import torch as torch from PIL import Image from gradio_imageslider import ImageSlider import spaces def process( pipe, path_input, ensemble_size, denoise_steps, processing_res, path_out_16bit=None, path_out_fp32=None, path_out_vis=None, ): if path_out_vis is not None: return ( [path_out_16bit, path_out_vis], [path_out_16bit, path_out_fp32, path_out_vis], ) input_image = Image.open(path_input) pipe_out = pipe( input_image, denoising_steps=denoise_steps, ensemble_size=ensemble_size, processing_res=processing_res, batch_size=1 if processing_res == 0 else 0, show_progress_bar=True, ) depth_pred = pipe_out.depth_np depth_colored = pipe_out.depth_colored depth_16bit = (depth_pred * 65535.0).astype(np.uint16) path_output_dir = os.path.splitext(path_input)[0] + "_output" os.makedirs(path_output_dir, exist_ok=True) name_base = os.path.splitext(os.path.basename(path_input))[0] path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy") path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png") path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png") np.save(path_out_fp32, depth_pred) Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16") depth_colored.save(path_out_vis) return ( [path_out_16bit, path_out_vis], [path_out_16bit, path_out_fp32, path_out_vis], ) @spaces.GPU def run_demo_server(pipe): process_pipe = functools.partial(process, pipe) os.environ["GRADIO_ALLOW_FLAGGING"] = "never" with gr.Blocks( analytics_enabled=False, title="GeoWizard Depth and Normal Estimation", css=""" #download { height: 118px; } .slider .inner { width: 5px; background: #FFF; } .viewport { aspect-ratio: 4/3; } """, ) as demo: gr.Markdown( """

Geowizard Depth & Normal Estimation

""" ) with gr.Row(): with gr.Column(): input_image = gr.Image( label="Input Image", type="filepath", ) with gr.Accordion("Advanced options", open=False): domain = gr.Radio( [ ("Outdoor", "outdoor"), ("Indoor", "indoor"), ("Object", "object"), ], label="Data Domain", value="indoor", ) cfg_scale = gr.Slider( label="Classifier Free Guidance Scale", minimum=1, maximum=5, step=1, value=3, ) denoise_steps = gr.Slider( label="Number of denoising steps", minimum=1, maximum=20, step=1, value=10, ) ensemble_size = gr.Slider( label="Ensemble size", minimum=1, maximum=15, step=1, value=1, ) processing_res = gr.Radio( [ ("Native", 0), ("Recommended", 768), ], label="Processing resolution", value=768, ) input_output_16bit = gr.File( label="Predicted depth (16-bit)", visible=False, ) input_output_fp32 = gr.File( label="Predicted depth (32-bit)", visible=False, ) input_output_vis = gr.File( label="Predicted depth (red-near, blue-far)", visible=False, ) with gr.Row(): submit_btn = gr.Button(value="Compute", variant="primary") clear_btn = gr.Button(value="Clear") with gr.Column(): output_slider = ImageSlider( label="Predicted depth (red-near, blue-far)", type="filepath", show_download_button=True, show_share_button=True, interactive=False, elem_classes="slider", position=0.25, ) files = gr.Files( label="Depth outputs", elem_id="download", interactive=False, ) blocks_settings_depth = [ensemble_size, denoise_steps, processing_res] blocks_settings = blocks_settings_depth map_id_to_default = {b._id: b.value for b in blocks_settings} inputs = [ input_image, ensemble_size, denoise_steps, processing_res, input_output_16bit, input_output_fp32, input_output_vis, ] outputs = [ submit_btn, input_image, output_slider, files, ] def submit_depth_fn(*args): print('args') out = list(process_pipe(*args)) out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out return out submit_btn.click( fn=submit_depth_fn, inputs=inputs, outputs=outputs, concurrency_limit=1, ) gr.Examples( fn=submit_depth_fn, examples=[ [ "files/bee.jpg", 10, # ensemble_size 10, # denoise_steps 768, # processing_res "files/bee_depth_16bit.png", "files/bee_depth_fp32.npy", "files/bee_depth_colored.png", ], ], inputs=inputs, outputs=outputs, cache_examples=True, ) def clear_fn(): out = [] for b in blocks_settings: out.append(map_id_to_default[b._id]) out += [ gr.Button(interactive=True), gr.Image(value=None, interactive=True), None, None, None, None, None, None, None, ] return out clear_btn.click( fn=clear_fn, inputs=[], outputs=blocks_settings + [ submit_btn, input_image, input_output_16bit, input_output_fp32, input_output_vis, output_slider, files, ], ) demo.queue( api_open=False, ).launch( server_name="0.0.0.0", server_port=7860, ) def main(): REPO_URL = "https://github.com/lemonaddie/geowizard.git" CHECKPOINT = "lemonaddie/Geowizard" REPO_DIR = "geowizard" if os.path.isdir(REPO_DIR): shutil.rmtree(REPO_DIR) repo = git.Repo.clone_from(REPO_URL, REPO_DIR) sys.path.append(os.path.join(os.getcwd(), REPO_DIR)) from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline device = torch.device("cuda" if torch.cuda.is_available() else "cpu") pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT) try: import xformers pipe.enable_xformers_memory_efficient_attention() except: pass # run without xformers pipe = pipe.to(device) run_demo_server(pipe) if __name__ == "__main__": main()