import sys, os import gradio as gr import numpy as np sys.path.append('stylegan3') import utils def to_uint8(im, ndim=2): im -= np.min(im) im /= np.max(im) im *= 255. im = np.asarray(im, dtype=np.uint8) if ndim == 3: if im.ndim == 2: im = np.expand_dims(im, axis=-1) elif im.ndim == 3: if im.shape[0] == 1: np.transpose(im, (1,2,0)) im = np.tile(im, (1,1,3)) #make fake RGB return im elif ndim ==2: if im.ndim == 2: return im if im.ndim == 3: if im.shape[0] == 1: #[1, H, W] return im[0,...] elif im.shape[2] == 1: #[H, W, 1] return im[...,0] else: raise AssertionError(f"Unexpected image passed to to_uint8 with shape: {np.shape(im)}.") in_gpu = False num_images = 1 G = utils.load_default_gen(in_gpu=in_gpu) sampler = utils.SampleFromGAN(G=G, z_shp=[num_images, G.z_dim], in_gpu=in_gpu) def sample_GAN(): im = sampler() im = im.numpy() im = np.transpose(im, (1,2,0)) im = np.squeeze(im) #if single channel (yes), drop it. # print(f"sample_linearBP: im shape: {im.shape}; min: {np.min(im)}, max: {np.max(im)}.") im = to_uint8(im, ndim=2) # print(f'1. uint image shape: {im.shape}') return im title="Generate fake linear array images" description="Generate fake linear array images." with gr.Blocks() as demo: gr.Markdown(description) with gr.Row(): with gr.Column(): button_gen = gr.Button("Generate fake linear image") with gr.Column(): output_im = gr.Image(type="numpy", height=256, width=256, image_mode="L", label="fake image", interactive=False) #grayscale image button_gen.click(sample_GAN, inputs=None, outputs=output_im) demo.launch(share=False)