from towhee import pipeline, FileManagerConfig, FileManager import gradio import numpy from PIL import Image title = 'Towhee AnimeGanV2 Pipeline' description = 'An end to end pipeline for AnimeGanV2 using the Towhee framework. Take a look at `app.py` to see how little steps it takes and try it for yourself using `pip install towhee`.\nQuick Note: First run after reboot may be slow due to caching pipeline operators.' article = 'Check out the Towhee Github' size = (512, 512) # Configuring the caching location fmc = FileManagerConfig() fmc.update_default_cache('./') # All pipelines loaded in at start. These pipelines all share operators for reduced memory overhead. celeba = pipeline('filip-halt/style-transfer-animegan', tag = 'celeba') facepaintv1 = pipeline('filip-halt/style-transfer-animegan', tag = 'facepaintv1') facepaintv2 = pipeline('filip-halt/style-transfer-animegan', tag = 'facepaintv2') hayao = pipeline('filip-halt/style-transfer-animegan', tag = 'hayao') paprika = pipeline('filip-halt/style-transfer-animegan', tag = 'paprika') shinkai = pipeline('filip-halt/style-transfer-animegan', tag = 'shinkai') def operation(Input, Version): # Resizing the image while keeping aspect ratio. Input.thumbnail(size, Image.ANTIALIAS) # Saving image to file for input. Very low chance of concurrent file saves during the time # between saving and taking first step of pipeline, so avoiding locks for now. In addition, # current gradio is set to queue so there will never be parallel runs for this. Input.save('./test.jpg') if Version == 'celeba': x = celeba('./test.jpg') elif Version == 'facepaintv1': x = facepaintv1('./test.jpg') elif Version == 'facepaintv2': x = facepaintv2('./test.jpg') elif Version == 'hayao': x = hayao('./test.jpg') elif Version == 'paprika': x = paprika('./test.jpg') elif Version == 'shinkai': x = shinkai('./test.jpg') # Converting from channel-first, [0,1] value RGB, numpy array to PIL image. x = numpy.transpose(x[0][0], (1,2,0)) x = Image.fromarray((x * 255).astype(numpy.uint8)) return x gradio.Interface(operation, [gradio.inputs.Image(type="pil"), gradio.inputs.Radio(["celeba", "facepaintv1", "facepaintv2", "hayao", "paprika", 'shinkai'])], gradio.outputs.Image(type="pil"), allow_flagging=False,allow_screenshot=False, title=title, article=article, description=description).launch(enable_queue=True)