File size: 4,846 Bytes
6f177bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import streamlit as st
import pandas as pd
import joblib

# import model
with open('SVC_Model.pkl','rb') as file_1:
  model = joblib.load(file_1)

st.title("Mobile Price Prediction")

st.subheader("Insert feature to predict")

# user input
battery_power = st.slider(label="Mobile Battery Power", min_value=501, max_value=1998, value=501)
st.write('You Selected : ', battery_power)

blue = st.selectbox(label='Does it have Bluetooth?', options=[0, 1])
st.write('You Selected : ')
if blue == 0:
    st.write('No')
else:
    st.write('Yes')
         

clock_speed = st.slider(label='Mobile Clock Speed', min_value=0.5, max_value=3.0, value=0.5)
st.write('You Selected : ', clock_speed)

dual_sim = st.selectbox(label='Does it support Dual Sim?', options=[0, 1])
st.write('You Selected : ')
if dual_sim == 0:
    st.write('No')
else:
    st.write('Yes')

fc = st.slider(label="Mobile Front Camera Resolution (MP)", min_value=0, max_value=19, value=0)
st.write('You Selected : ', fc)

four_g = st.selectbox(label='Does it support 4G?', options=[0, 1])
st.write('You Selected : ', four_g)

int_memory = st.slider(label="Mobile Internal Memory (GB)", min_value=2, max_value=62, value=2)
st.write('You Selected : ', int_memory)

m_dep = st.slider(label="Mobile Depth (cm)", min_value=0.1, max_value=1.0, value=0.1)
st.write('You Selected : ', m_dep)

mobile_wt = st.slider(label="Mobile Weight (Gram)", min_value=80, max_value=200, value=80)
st.write('You Selected : ', mobile_wt)

n_cores = st.slider(label="Number of Cores", min_value=1, max_value=8, value=1)
st.write('You Selected : ', n_cores)

pc = st.slider(label="Mobile Primary Camera Resolution (MP)", min_value=0, max_value=20, value=0)
st.write('You Selected : ', pc)

px_height = st.slider(label="Pixel Height (px)", min_value=0, max_value=1960, value=0)
st.write('You Selected : ', px_height)

px_width = st.slider(label="Pixel Width (px)", min_value=0, max_value=1998, value=0)
st.write('You Selected : ', px_width)

ram = st.slider(label="Mobile RAM Value (MB)", min_value=256, max_value=3998, value=256)
st.write('You Selected : ', ram)

sc_h = st.slider(label="Screen Height (cm)", min_value=5, max_value=19, value=5)
st.write('You Selected : ', sc_h)

sc_w = st.slider(label="Screen Width (cm)", min_value=0, max_value=18, value=0)
st.write('You Selected : ', sc_w)

talk_time = st.slider(label="Longest time that a single battery charge will last when you are in calls (Hour)", min_value=2, max_value=20, value=2)
st.write('You Selected : ', talk_time)

three_g = st.selectbox(label='Does it support 3G?', options=[0, 1])
st.write('You Selected : ')
if three_g == 0:
    st.write('No')
else:
    st.write('Yes')

touch_screen = st.selectbox(label='Does it support Touch Screen?', options=[0, 1])
if touch_screen == 0:
    st.write('No')
else:
    st.write('Yes')

wifi = st.selectbox(label='Does it support Wifi?', options=[0, 1])
if wifi == 0:
    st.write('No')
else:
    st.write('Yes')

# convert into dataframe
data = pd.DataFrame({'Battery_Power': [battery_power],
                'Bluetooth': [blue],
                'Clock_Speed': [clock_speed],
                'Dual_Sim':[dual_sim],
                'Front_Camera': [fc],
                'Four_G': [four_g],
                'Internal_Memory': [int_memory],
                'Mobile_Depth': [m_dep],
                'Mobile_Width': [mobile_wt],
                'Number_of_Cores':[n_cores],
                'Primary_Camera': [pc],
                'Pixel_Height': [px_height],
                'Pixel_Width': [px_width],
                'Bluetooth': [blue],
                'RAM': [ram],
                'Screen_Height':[sc_h],
                'Screen_Width': [sc_w],
                'Talk_Time': [talk_time],
                'Three_G': [three_g],
                'Touch_Screen': [touch_screen],
                'Wifi': [wifi]
})

data = data.rename(columns={
    'Battery_Power': 'battery_power',
    'Bluetooth': 'blue',
    'Clock_Speed': 'clock_speed',
    'Dual_Sim': 'dual_sim',
    'Front_Camera': 'fc',
    'Four_G': 'four_g',
    'Internal_Memory': 'int_memory',
    'Mobile_Depth': 'm_dep',
    'Mobile_Width': 'mobile_wt',
    'Number_of_Cores': 'n_cores',
    'Primary_Camera': 'pc',
    'Pixel_Height': 'px_height',
    'Pixel_Width': 'px_width',
    'RAM': 'ram',
    'Screen_Height': 'sc_h',
    'Screen_Width': 'sc_w',
    'Talk_Time': 'talk_time',
    'Three_G': 'three_g',
    'Touch_Screen': 'touch_screen',
    'Wifi': 'wifi'
})

# interpretation
if st.button('Predict'):
    classifications = model.predict(data).tolist()[0]
    st.write('Prediction Result : ')
    if classifications == 0:
        st.subheader('Low Price')
    elif classifications == 1:
        st.subheader('Medium Price')
    elif classifications == 2:
        st.subheader('High Price')
    else:
        st.subheader('Very High Price')