import gradio as gr import torch import numpy as np import sys from vinorm import TTSnorm from utils_audio import convert_to_wav sys.path.append("vits") import commons import utils from models import SynthesizerTrn from text.symbols import symbols from text import text_to_sequence from scipy.io.wavfile import write import logging numba_logger = logging.getLogger("numba") numba_logger.setLevel(logging.WARNING) from resemblyzer import preprocess_wav, VoiceEncoder device = "cpu" def get_text(texts, hps): text_norm_list = [] for text in texts.split(","): chunk_strings = [] chunk_len = 30 for i in range(0, len(text.split()), chunk_len): chunk = " ".join(text.split()[i : i + chunk_len]) chunk_strings.append(chunk) for chunk_string in chunk_strings: text_norm = text_to_sequence(chunk_string, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm_list.append(torch.LongTensor(text_norm)) return text_norm_list def get_speaker_embedding(path): encoder = VoiceEncoder(device="cpu") path = convert_to_wav(path) wav = preprocess_wav(path) embed = encoder.embed_utterance(wav) return embed class VoiceClone: def __init__(self, checkpoint_path): hps = utils.get_hparams_from_file("vivos.json") self.net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model ).to(device) _ = self.net_g.eval() _ = utils.load_checkpoint(checkpoint_path, self.net_g, None) self.hps = hps def infer(self, text, ref_audio): text_norm = TTSnorm(text) stn_tst_list = get_text(text_norm, self.hps) with torch.no_grad(): audios = [] for stn_tst in stn_tst_list: x_tst = stn_tst.to(device).unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device) speaker_embedding = get_speaker_embedding(ref_audio) speaker_embedding = ( torch.FloatTensor(torch.from_numpy(speaker_embedding)) .unsqueeze(0) .to(device) ) audio = self.net_g.infer( x_tst, x_tst_lengths, speaker_embedding=speaker_embedding, noise_scale=0.667, noise_scale_w=0.8, length_scale=1, ) audio = audio[0][0, 0].data.cpu().float().numpy() audios.append(audio) print(audio.shape) audios = np.concatenate(audios, axis=0) write(ref_audio.replace(".wav", "_clone.wav"), 22050, audios) return ref_audio.replace(".wav", "_clone.wav"), text_norm object = VoiceClone("G_150000.pth") def clonevoice(text: str, speaker_wav, file_upload, language: str): speaker_source = "" if speaker_wav is not None: speaker_source = speaker_wav elif file_upload is not None: speaker_source = file_upload else: speaker_source = "vsontung.wav" print(speaker_source) outfile, text_norm = object.infer(text, speaker_source) return [outfile, text_norm] inputs = [ gr.Textbox( label="Input", value="muốn ngồi ở một vị trí không ai ngồi được thì phải chịu cảm giác không ai chịu được", max_lines=3, ), gr.Audio(label="Speaker Wav", source="microphone", type="filepath"), gr.Audio(label="Speaker Wav", source="upload", type="filepath"), gr.Radio(label="Language", choices=["Vietnamese"], value="en"), ] outputs = [gr.Audio(label="Output"), gr.TextArea()] demo = gr.Interface(fn=clonevoice, inputs=inputs, outputs=outputs) demo.launch(debug=True)