import gradio as gr import os from gradio_client import Client, handle_file import numpy as np import tempfile import imageio import torch from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() hf_token = os.environ.get("HF_TOKEN") def get_caption(image_in): kosmos2_client = Client("fffiloni/Kosmos-2-API", hf_token=hf_token) kosmos2_result = kosmos2_client.predict( image_input=handle_file(image_in), text_input="Detailed", api_name="/generate_predictions" ) print(f"KOSMOS2 RETURNS: {kosmos2_result}") data = kosmos2_result[1] # Extract and combine tokens starting from the second element sentence = ''.join(item['token'] for item in data[1:]) # Find the last occurrence of "." #last_period_index = full_sentence.rfind('.') # Truncate the string up to the last period #truncated_caption = full_sentence[:last_period_index + 1] # print(truncated_caption) #print(f"\n—\nIMAGE CAPTION: {truncated_caption}") return sentence def export_to_video(frames: np.ndarray, fps: int) -> str: frames = np.clip((frames * 255), 0, 255).astype(np.uint8) out_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) writer = imageio.get_writer(out_file.name, format="FFMPEG", fps=fps) for frame in frames: writer.append_data(frame) writer.close() return out_file.name def infer(image_init): prompt = get_caption(image_init) video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames[0] video_path = export_to_video(video_frames, 12) print(video_path) return prompt, video_path css = """ #col-container {max-width: 510px; margin-left: auto; margin-right: auto;} a {text-decoration-line: underline; font-weight: 600;} .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; } #share-btn-container:hover { background-color: #060606; } #share-btn { all: initial; color: #ffffff; font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important; right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } #share-btn-container.hidden { display: none!important; } img[src*='#center'] { display: block; margin: auto; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown( """

Zeroscope Image-to-Video

A watermark-free Modelscope-based video model optimized for producing high-quality 16:9 compositions and a smooth video output.
This demo is a variation that lets you upload an image as reference for video generation.

[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg#center)](https://huggingface.co/spaces/fffiloni/zeroscope-img-to-video?duplicate=true) """ ) image_init = gr.Image(label="Image Init", type="filepath", sources=["upload"], elem_id="image-init") #inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=40, interactive=False) submit_btn = gr.Button("Submit") coca_cap = gr.Textbox(label="Caption", placeholder="CoCa Caption will be displayed here", elem_id="coca-cap-in") video_result = gr.Video(label="Video Output", elem_id="video-output") submit_btn.click( fn=infer, inputs=[image_init], outputs=[coca_cap, video_result], show_api=False ) demo.queue(max_size=12).launch(show_api=False)