import gradio as gr #import torch #from torch import autocast // only for GPU from PIL import Image import numpy as np from io import BytesIO import os MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') #from diffusers import StableDiffusionPipeline from diffusers import StableDiffusionImg2ImgPipeline print("hello sylvain") YOUR_TOKEN=MY_SECRET_TOKEN device="cpu" pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN) pipe.to(device) source_img = gr.Image(source="upload", type="numpy") gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto") def infer(prompt, init_image): print(init_image) return init_image print("Great sylvain ! Everything is working fine !") title="Stable Diffusion CPU" description="Stable Diffusion example using CPU and HF token.
Warning: Slow process... ~5/10 min inference time. NSFW filter enabled." gr.Interface(fn=infer, inputs=["text", source_img], outputs=gallery,title=title,description=description).launch(enable_queue=True)