import gradio as gr import torch from PIL import Image from lambda_diffusers import StableDiffusionImageEmbedPipeline def ask(input_im, scale, steps, seed, images): images = images generator = torch.Generator(device=device).manual_seed(int(seed)) images_list = pipe( 2*[input_im], guidance_scale=scale, num_inference_steps=steps, generator=generator, ) for i, image in enumerate(images_list["sample"]): if(images_list["nsfw_content_detected"][i]): safe_image = Image.open(r"unsafe.png") images.append(safe_image) else: images.append(image) return images def main(input_im, scale, steps, seed): images = [] for i in range(2): images = ask(input_im, scale, n_samples, steps, seed, images) #images = ask(input_im, scale, n_samples, steps, seed, images) #images = ask(input_im, scale, n_samples, steps, seed, images) return images device = "cuda" if torch.cuda.is_available() else "cpu" pipe = StableDiffusionImageEmbedPipeline.from_pretrained( "lambdalabs/sd-image-variations-diffusers", revision="273115e88df42350019ef4d628265b8c29ef4af5", ) pipe = pipe.to(device) inputs = [ gr.Image(), gr.Slider(0, 25, value=3, step=1, label="Guidance scale"), gr.Slider(5, 50, value=25, step=5, label="Steps"), gr.Slider(label = "Seed", minimum = 0, maximum = 2147483647, step = 1, randomize = True) ] output = gr.Gallery(label="Generated variations") output.style(grid=2, height="") description = \ """
This demo is running on CPU. Working version fixed by Sylvain @fffiloni. You'll get 4 images variations. NSFW filters enabled.
Generate variations on an input image using a fine-tuned version of Stable Diffusion.
Trained by Justin Pinkney (@Buntworthy) at Lambda
This version has been ported to 🤗 Diffusers library, see more details on how to use this version in the Lambda Diffusers repo.
For the original training code see this repo.