import logging import random import torch from torch.cuda.amp import autocast as autocast import torch.nn as nn from minigpt4.common.registry import registry from minigpt4.models.blip2 import Blip2Base, disabled_train # from minigpt4.models.modeling_llama_v2 import LlamaForCausalLM as llm_model # minigpt4.models.modeling_mistral import MistralForCausalLM as llm_model from minigpt4.conversation.conversation import Conversation, SeparatorStyle, StoppingCriteriaList, StoppingCriteriaSub from transformers import LlamaTokenizer from transformers import BitsAndBytesConfig from peft import ( LoraConfig, get_peft_model, get_peft_model_state_dict, prepare_model_for_int8_training, set_peft_model_state_dict, ) import time import numpy as np from minigpt4.models import policies @registry.register_model("mini_gpt4_llama_v2") class MiniGPT4_llama_v2(Blip2Base): """ BLIP2 GPT-LLAMA model. """ PRETRAINED_MODEL_CONFIG_DICT = { "pretrain_vicuna": "configs/models/minigpt4.yaml", } def __init__( self, vit_model="eva_clip_g", img_size=224, drop_path_rate=0, use_grad_checkpoint=False, vit_precision="fp16", freeze_vit=True, llama_model="", prompt_path="", prompt_template="", max_txt_len=32, low_resource=False, # use 8 bit and put vit in cpu end_sym='\n', lora_r = 8, lora_target_modules = ["q_proj","v_proj"], lora_alpha=16, # lora_r = 16, # lora_target_modules = ["q_proj","v_proj","v_proj"], lora_dropout= 0.05, ckpt_path = "", system_prompt= False, chat_template=False, token_pooling=True, use_grad_checkpoint_llm=False, max_context_len=3800, remove_template = False, ): super().__init__() if "Mistral" in llama_model: from minigpt4.models.modeling_mistral import MistralForCausalLM as llm_model print("Mistral model") self.model_type = "Mistral" else: from minigpt4.models.modeling_llama_v2 import LlamaForCausalLM as llm_model print("Llama model") self.model_type = "Llama" self.tokenizer = self.init_tokenizer() self.low_resource = low_resource self.token_pooling = token_pooling self.remove_template = remove_template print("token pooling", self.token_pooling) self.use_grad_checkpoint_llm = use_grad_checkpoint_llm self.max_context_len = max_context_len self.chat_template = chat_template # print('Loading VIT') # self.visual_encoder, self.ln_vision = self.init_vision_encoder( # vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision # ) if freeze_vit: # vit_precision="fp32" print("vit precision", vit_precision) self.visual_encoder, self.ln_vision = self.init_vision_encoder( vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision ) for name, param in self.visual_encoder.named_parameters(): param.requires_grad = False self.visual_encoder = self.visual_encoder.eval() self.visual_encoder.train = disabled_train for name, param in self.ln_vision.named_parameters(): param.requires_grad = False self.ln_vision = self.ln_vision.eval() self.ln_vision.train = disabled_train logging.info("freeze vision encoder") print("freeze the vision encoder") else: vit_precision="fp32" self.visual_encoder, self.ln_vision = self.init_vision_encoder( vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision ) print("unfreeze the vision encoder") print('Loading VIT Done') # print("visual encoder shape", self.visual_encoder.pos_embed.shape) # assert False print('Loading LLAMA') self.B_SYS, self.E_SYS = "<>\n", "\n<>\n\n" self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model,use_fast=False) # self.llama_tokenizer.pad_token = "$$" self.system_prompt = system_prompt print("self.low_resource",self.low_resource) if self.low_resource: self.llama_model = llm_model.from_pretrained( llama_model, torch_dtype=torch.float16, # torch_dtype = torch.bfloat16, load_in_8bit=True, # device_map = "balanced" # device_map="auto", device_map={'':torch.cuda.current_device()}, # device_map={'':0} ) # bnb_config = BitsAndBytesConfig( # load_in_4bit=True, # bnb_4bit_use_double_quant=True, # bnb_4bit_quant_type="nf4", # bnb_4bit_compute_dtype=torch.bfloat16, # ) # self.llama_model = llm_model.from_pretrained( # llama_model, # torch_dtype=torch.bfloat16, # device_map={'':torch.cuda.current_device()}, # quantization_config=bnb_config, # ) else: self.llama_model = llm_model.from_pretrained( llama_model, torch_dtype=torch.float16, ) # self.llama_model.resize_token_embeddings(len(self.llama_tokenizer)) self.llama_model = prepare_model_for_int8_training(self.llama_model) loraconfig = LoraConfig( r=lora_r, lora_alpha=lora_alpha, target_modules=lora_target_modules, lora_dropout=lora_dropout, bias="none", task_type="CAUSAL_LM" ) self.llama_model = get_peft_model(self.llama_model, loraconfig) # if ckpt_path: # print('load the llm under lora') # ckpt = torch.load(ckpt_path) # set_peft_model_state_dict(self.llama_model,ckpt) self.llama_model.print_trainable_parameters() if self.use_grad_checkpoint_llm: self.llama_model.gradient_checkpointing_enable() # if not self.low_resource: # for name, param in self.llama_model.named_parameters(): # if "embed_token" in name: # param.data = param.data.float() # param.requires_grad = True print('Loading LLAMA Done') if self.token_pooling: self.llama_proj = nn.Linear( 1408*4, self.llama_model.config.hidden_size ) else: self.llama_proj = nn.Linear( 1408, self.llama_model.config.hidden_size ) self.max_txt_len = max_txt_len self.end_sym = end_sym if prompt_path: with open(prompt_path, 'r') as f: raw_prompts = f.read().splitlines() filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "" in raw_prompt] self.prompt_list = [prompt_template.format(p) for p in filted_prompts] print('Load {} training prompts'.format(len(self.prompt_list))) print('Prompt Example \n{}'.format(random.choice(self.prompt_list))) else: self.prompt_list = [] def encode_img(self, image): device = image.device if len(image.shape) > 4: image = image.reshape(-1, *image.shape[-3:]) # for video input flatten the batch and time dimension (4,50,3,224,224) -> (200,3,224,224) with self.maybe_autocast(): image_embeds = self.ln_vision(self.visual_encoder(image)).to(device) # (200,3,224,224) -> (200,257,1408) image_embeds = image_embeds[:,1:,:] # remove the first token (CLS) (200,256,1408) bs, pn, hs = image_embeds.shape if self.token_pooling: # concat the each 4 tokens into one token (200,64,5632) image_embeds = image_embeds.view(bs, int(pn/4), int(hs*4)) # (200,64,5632) inputs_llama = self.llama_proj(image_embeds) # project to llama input size (200,64,5632) -> (200,64,4096) atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device) return inputs_llama, atts_llama def get_context_emb(self, prompt, img_list): img_device = img_list[0].device prompt_segs = prompt.split('') assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images." seg_tokens = [ self.llama_tokenizer( seg, return_tensors="pt", add_special_tokens=i==0).to(img_device).input_ids # only add bos to the first seg for i, seg in enumerate(prompt_segs) ] seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens] mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]] mixed_embs = torch.cat(mixed_embs, dim=1) # # truncate the length of tokens to the max context window # mixed_embs_without_instruction = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] # mixed_embs_without_instruction=torch.cat(mixed_embs_without_instruction, dim=1) # # check if the number of token in the second dimention is more than the max context window then truncate it # context_window=self.max_context_len-seg_embs[-1].shape[1] # if mixed_embs_without_instruction.shape[1] > context_window : # mixed_embs_without_instruction = mixed_embs_without_instruction[:, 0:context_window] # mixed_embs=torch.cat([mixed_embs_without_instruction,seg_embs[-1]], dim=1) # print("mixed_embs",mixed_embs.shape) return mixed_embs def prompt_wrap(self, img_embeds, atts_img, prompts, lengths=None): if prompts is None or len(prompts) == 0: # prompts is not provided, just return the original image embedding return img_embeds, atts_img elif img_embeds is None: # prompt is provided but there is no image embedding. return the prompt embedding in right padding self.llama_tokenizer.padding_side = "right" prompt_tokens = self.llama_tokenizer( prompts, return_tensors="pt", padding="longest", add_special_tokens=False ).to(self.device) prompt_embeds = self.embed_tokens(prompt_tokens.input_ids) atts_prompt = prompt_tokens.attention_mask return prompt_embeds, atts_prompt else: # return the multi-modal embedding in right padding emb_lists = [] for idx, (each_img_embed, each_prompt) in enumerate(zip(img_embeds, prompts)): pn = each_img_embed.shape[-2] if lengths is not None: each_img_embed = each_img_embed.reshape(-1, each_img_embed.shape[-1]) each_img_embed = each_img_embed[:lengths[idx] * pn] p_segs = each_prompt.split('') interleave_emb = [] for idx, seg in enumerate(p_segs[:-1]): p_tokens = self.llama_tokenizer(seg, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) # print("p_embed device",p_tokens.input_ids.device) # print("p_tokens",img_embeds.device) # print("emb layer", list(self.llama_model.base_model.model.model.embed_tokens.parameters())[0].device) p_embed = self.embed_tokens(p_tokens.input_ids) # print("model device",self.llama_model.get_device()) interleave_emb.append(torch.cat([p_embed, each_img_embed[None][:, idx*pn:(idx+1)*pn]], dim=1)) wrapped_emb = torch.cat(interleave_emb, dim=1) p_tokens = self.llama_tokenizer(p_segs[-1], return_tensors="pt", add_special_tokens=False).to(img_embeds.device) p_embed = self.embed_tokens(p_tokens.input_ids) wrapped_emb = torch.cat([wrapped_emb,p_embed], dim=1) emb_lists.append(wrapped_emb) emb_lens = [emb.shape[1] for emb in emb_lists] pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device)) # max_length = max(emb_lens) if max(emb_lens) < self.max_context_len else self.max_context_len max_length = self.max_context_len wrapped_embs = pad_emb.expand(len(emb_lens), max_length, -1).clone() wrapped_atts = torch.zeros([len(emb_lens), max_length], dtype=torch.int, device=img_embeds.device) for i, emb in enumerate(emb_lists): length = emb_lens[i] if emb_lens[i] < self.max_context_len else self.max_context_len wrapped_embs[i, :length] = emb[:, :length] wrapped_atts[i, :length] = 1 return wrapped_embs, wrapped_atts def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts): """ Concatenate the batched input embedding and batched output embedding together. Both the input and the output embedding should be right padded. """ input_lens = [] cat_embs = [] cat_atts = [] for i in range(input_embs.size(0)): input_len = input_atts[i].sum() input_lens.append(input_len) cat_embs.append( torch.cat([ input_embs[i][:input_len], output_embs[i], input_embs[i][input_len:] ]) ) cat_atts.append( torch.cat([ input_atts[i][:input_len], output_atts[i], input_atts[i][input_len:] ]) ) # print('===================================') # print('check input emb: ', input_embs[i][this_input_ones-2:this_input_ones]) # print('check pad emb: ', input_embs[i][this_input_ones:this_input_ones+2]) # print('check out emb: ', output_embs[i][:2]) # print('check out pad emb: ', output_embs[i][-2:]) # print('+++++++++++++++++++++++++++++++++++') # # print('check attn before: ', input_atts[i][:this_input_ones]) # print('check attn after: ', input_atts[i][this_input_ones:]) # print('check attn gt before: ', output_atts[i][:3]) # print('check attn gt after: ', output_atts[i][-3:]) cat_embs = torch.stack(cat_embs) cat_atts = torch.stack(cat_atts) return cat_embs, cat_atts, input_lens def get_conv_emb(self, conv_q, conv_a, conv_img): """concatenate conversation and make sure the model is only trained to regress the answer""" regress_embs_list = [] targets_list = [] batch_size = len(conv_q) for batch_idx in range(batch_size): questions, answers = conv_q[batch_idx], conv_a[batch_idx] assigned_imgs = conv_img[batch_idx] questions = [self.prompt_wrap( img_embeds=img, atts_img=None, prompts=[q], lengths=[img.shape[1]] if img is not None else None) for q, img in zip(questions, assigned_imgs)] q_embs = [emb for emb, _ in questions] answers = [self.llama_tokenizer(a, return_tensors="pt", add_special_tokens=False).to(self.device) for a in answers] cur_emb = [] cur_target = [] for i in range(len(questions)): cur_emb.append(q_embs[i]) cur_target.append(torch.ones_like(q_embs[i][..., 0], dtype=torch.int) * -100) cur_emb.append(self.embed_tokens(answers[i].input_ids)) cur_target.append(answers[i].input_ids) cur_emb = torch.cat(cur_emb, dim=1) cur_target = torch.cat(cur_target, dim=1) regress_embs_list.append(cur_emb) targets_list.append(cur_target) max_len = min(max([target.shape[1] for target in targets_list]), self.max_txt_len) regress_embeds = torch.zeros([batch_size, max_len, cur_emb.shape[-1]], device=self.device) regress_attn = torch.zeros([batch_size, max_len], dtype=torch.int, device=self.device) targets = torch.ones([batch_size, max_len], dtype=torch.long, device=self.device) * -100 for batch_idx in range(batch_size): cur_len = regress_embs_list[batch_idx].shape[1] regress_embeds[batch_idx, :cur_len] = regress_embs_list[batch_idx][0, :max_len] regress_attn[batch_idx, :cur_len] = 1 targets[batch_idx, :cur_len] = targets_list[batch_idx][0, :max_len] return regress_embeds, regress_attn, targets def preparing_embedding(self, samples): def remove_special_tokens(data): # if "instruction_input" in data: data = [instruct.replace(" [caption]","") for instruct in data] data = [instruct.replace(" [vqa]","") for instruct in data] data = [instruct.replace(" [grounding]","") for instruct in data] data = [instruct.replace(" [identify]","") for instruct in data] data = [instruct.replace(" [refer]","") for instruct in data] return data ### prepare input tokens if 'image' in samples: img_embeds, img_atts = self.encode_img(samples["image"]) # print("img_embeds shape",img_embeds.shape) else: img_embeds = img_atts = None if 'conv_q' in samples: # handeling conversation datasets conv_q, conv_a = samples['conv_q'], samples['conv_a'] connect_sym = samples['connect_sym'][0] conv_q = [q.split(connect_sym)for q in conv_q] conv_a = [a.split(connect_sym) for a in conv_a] conv_img = assign_imgs(conv_q, img_embeds) if self.chat_template: conv_q = [["[INST] " + item + "[/INST]" for item in items] for items in conv_q] regress_embeds, regress_atts, part_targets = self.get_conv_emb(conv_q, conv_a, conv_img) cond_embeds, cond_atts = regress_embeds[:, :0], regress_atts[:, :0] else: instruction = samples["instruction_input"] if "instruction_input" in samples else None # print("instruction before", instruction) if self.remove_template: instruction = remove_special_tokens(instruction) # print("instruction after", instruction) if self.chat_template: instruction = ["[INST] " + instruct + "[/INST]" for instruct in instruction] if 'length' in samples: # the input is a image train (like videos) bsz, pn, hs = img_embeds.shape img_embeds = img_embeds.reshape(len(samples['image']), -1, pn, hs) # (200,64,4096) -> (4,50,64,4096) cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction, samples['length']) else: cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction) ### prepare target tokens self.llama_tokenizer.padding_side = "right" text = [t + self.end_sym for t in samples["answer"]] regress_tokens = self.llama_tokenizer( text, return_tensors="pt", padding="max_length", truncation=True, max_length=self.max_txt_len, add_special_tokens=False ).to(self.device) regress_token_ids = regress_tokens.input_ids regress_atts = regress_tokens.attention_mask part_targets = regress_token_ids.masked_fill( regress_token_ids == self.llama_tokenizer.pad_token_id, -100 ) regress_embeds = self.embed_tokens(regress_token_ids) return cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets def forward(self, samples, reduction="mean"): # prepare the embedding to condition and the embedding to regress cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets = \ self.preparing_embedding(samples) # concat the embedding to condition and the embedding to regress inputs_embeds, attention_mask, input_lens = \ self.concat_emb_input_output(cond_embeds, cond_atts, regress_embeds, regress_atts) print("inputs_embeds shape",inputs_embeds.shape) print("cond_embeds shape",cond_embeds.shape) print("regress_embeds shape",regress_embeds.shape) # get bos token embedding bos = torch.ones_like(part_targets[:, :1]) * self.llama_tokenizer.bos_token_id bos_embeds = self.embed_tokens(bos) bos_atts = attention_mask[:, :1] # add bos token at the begining inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1) attention_mask = torch.cat([bos_atts, attention_mask], dim=1) # print length of instruction_input and answer words # for i in range (len(samples["instruction_input"])): # print("instruction_input length",len(samples["instruction_input"][i].split(" "))) # print("answer length",len(samples["answer"][i].split(" "))) # ensemble the final targets targets = torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]], dtype=torch.long).to(self.device).fill_(-100) for i, target in enumerate(part_targets): targets[i, input_lens[i]+1:input_lens[i]+len(target)+1] = target # plus 1 for bos print("targets shape",targets.shape) with self.maybe_autocast(): outputs = self.llama_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, return_dict=True, labels=targets, reduction=reduction ) loss = outputs.loss return {"loss": loss} @torch.no_grad() def generate( self, images, texts, use_nucleus_sampling=False, num_beams=1, max_new_tokens=20, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1, temperature=1, do_sample=False, stop_words_ids=[2], lengths=None, return_video_temporal_features=False, img_embeds=None, ): ''' function for generate test use ''' stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub( stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])]) if img_embeds is None: img_embeds, atts_img = self.encode_img(images.to(self.device)) else: # Use images features from the input(4,45,64,5632) img_embeds = img_embeds.reshape(-1, *img_embeds.shape[-2:]) img_embeds= img_embeds.to(self.device) img_embeds = self.llama_proj(img_embeds) # project to llama input size (200,64,5632) -> (200,64,4096) atts_img = torch.ones(img_embeds.size()[:-1], dtype=torch.long).to(self.device) print("img_embeds shape",img_embeds.shape) if lengths is not None: image_lists = [] img_embeds = img_embeds.reshape(len(lengths), -1, img_embeds.shape[-2], img_embeds.shape[-1]) for idx, img_embed in enumerate(img_embeds): image_lists.append([img_embed[i][None] for i in range(lengths[idx])]) else: image_lists = [[image_emb[None]] for image_emb in img_embeds] assert len(texts) == len(image_lists) batch_embs = [self.get_context_emb(text, img_list) for text, img_list in zip(texts, image_lists)] batch_size = len(batch_embs) max_len = max([emb.shape[1] for emb in batch_embs]) emb_dim = batch_embs[0].shape[2] dtype = batch_embs[0].dtype device = batch_embs[0].device embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device) attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device) for i, emb in enumerate(batch_embs): emb_len = emb.shape[1] embs[i, -emb_len:] = emb[0] attn_mask[i, -emb_len:] = 1 # print("inputs_embeds shape",embs.shape) # print("attention_mask shape",attn_mask.shape) # check if the input embedding tokens are in the range of the model cotext window (4096) and if it is not, then truncate it to the max context window if self.model_type == "Llama": context_window = 3700 else: context_window = 7500 if embs.shape[1] > context_window: embs = embs[:, -context_window:] attn_mask = attn_mask[:, -context_window:] print("inputs_embeds shape",embs.shape) print("attention_mask shape",attn_mask.shape) with self.maybe_autocast(): if return_video_temporal_features: last_hidden_state = self.llama_model( inputs_embeds=embs, attention_mask=attn_mask, output_hidden_states=True, ).hidden_states[-1] video_temporal_features = last_hidden_state.mean(dim=1) # normalize the temporal features using L2 norm # video_temporal_features = video_temporal_features / video_temporal_features.norm(dim=-1, keepdim=True) outputs = self.llama_model.generate( inputs_embeds=embs, attention_mask=attn_mask, max_new_tokens=max_new_tokens, num_beams=num_beams, do_sample=do_sample, temperature=temperature, repetition_penalty=repetition_penalty, # stopping_criteria=stopping_criteria, ) answers = [] for output_token in outputs: if output_token[0] == 0: output_token = output_token[1:] output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True) output_texts = output_texts.split('')[0] # remove the stop sign output_texts = output_texts.replace("", "") output_texts = output_texts.split(r'[/INST]')[-1].strip() answers.append(output_texts) if return_video_temporal_features: return answers, video_temporal_features else: return answers @torch.no_grad() def generate_text_only( self, images, seg_tokens, use_nucleus_sampling=False, num_beams=1, max_new_tokens=20, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1, temperature=1, do_sample=False, stop_words_ids=[2], lengths=None, return_video_temporal_features=False, img_embeds=None, ): ''' function for generate test use ''' stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub( stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])]) # seg_tokens=[] # for i, text in enumerate(texts): # seg_tokens.append(self.llama_tokenizer(text, return_tensors="pt", add_special_tokens=True).to(self.device).input_ids) batch_embs = [torch.cat([self.embed_tokens(seg_t)]) for seg_t in seg_tokens] # seg_embs = torch.cat(seg_embs, dim=1) # print("seg_embs shape",seg_embs.shape) # batch_embs=[seg_embs] batch_size = len(batch_embs) max_len = max([emb.shape[1] for emb in batch_embs]) emb_dim = batch_embs[0].shape[2] dtype = batch_embs[0].dtype device = batch_embs[0].device embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device) attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device) for i, emb in enumerate(batch_embs): emb_len = emb.shape[1] embs[i, -emb_len:] = emb[0] attn_mask[i, -emb_len:] = 1 print("inputs_embeds shape",embs.shape) print("attention_mask shape",attn_mask.shape) with self.maybe_autocast(): outputs = self.llama_model.generate( inputs_embeds=embs, attention_mask=attn_mask, max_new_tokens=max_new_tokens, num_beams=num_beams, do_sample=do_sample, temperature=temperature, repetition_penalty=repetition_penalty, # stopping_criteria=stopping_criteria, ) answers = [] for output_token in outputs: if output_token[0] == 0: output_token = output_token[1:] output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True) output_texts = output_texts.split('')[0] # remove the stop sign output_texts = output_texts.replace("", "") output_texts = output_texts.split(r'[/INST]')[-1].strip() answers.append(output_texts) return answers @torch.no_grad() def multi_select(self, images, texts, answers, num_cand=None): all_losses = [] for answer in answers: choice_samples = { 'image': images, 'instruction_input': texts, 'answer': answer } loss = self.forward(choice_samples, reduction='none')['loss'].reshape(-1, 1) all_losses.append(loss) torch.cuda.empty_cache() all_losses = torch.cat(all_losses, dim=-1) if num_cand is not None: for i in range(all_losses.shape[0]): all_losses[i, num_cand[i]:] = 9999 output_class_ranks = torch.argsort(all_losses, dim=-1) return output_class_ranks.tolist() def predict_answers( self, samples, num_beams=5, inference_method="generate", max_len=10, min_len=1, num_ans_candidates=128, answer_list=None, prompt="", length_penalty=0, **kwargs ): ''' function for open-ended VQA ''' images = samples["image"].cuda() texts = samples["instruction_input"] output_text = self.generate( images=images, texts=texts, num_beams=num_beams, max_new_tokens=max_len, min_length=min_len, length_penalty=length_penalty ) if "apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]: output_text = self._lemmatize(output_text) return output_text def predict_class( self, samples, num_beams=5, inference_method="generate", max_len=10, min_len=1, num_ans_candidates=5, answer_list=None, prompt="", length_penalty=0, **kwargs ): ''' function for multi-choice VQA ''' image = samples["image"].cuda() instruction = samples['instruction_input'] answers = samples["choices"] num_cand = samples["num_choices"] ranks = self.multi_select(image, instruction, answers, num_cand) pred_ans = [] for i, rank in enumerate(ranks): pred = answers[rank[0]][i] pred_ans.append(pred) return pred_ans def embed_tokens(self, token_ids): try: embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids) except AttributeError: embeds = self.llama_model.model.embed_tokens(token_ids) return embeds @classmethod def from_config(cls, cfg): vit_model = cfg.get("vit_model", "eva_clip_g") q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth") img_size = cfg.get("image_size") num_query_token = cfg.get("num_query_token") llama_model = cfg.get("llama_model") drop_path_rate = cfg.get("drop_path_rate", 0) use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) vit_precision = cfg.get("vit_precision", "fp16") freeze_vit = cfg.get("freeze_vit", True) freeze_qformer = cfg.get("freeze_qformer", True) low_resource = cfg.get("low_resource", False) prompt_path = cfg.get("prompt_path", "") prompt_template = cfg.get("prompt_template", "") max_txt_len = cfg.get("max_txt_len", 300) end_sym = cfg.get("end_sym", '\n') lora_r = cfg.get("lora_r",64) lora_alpha = cfg.get("lora_alpha",16) chat_template = cfg.get("chat_template",False) system_prompt = cfg.get("system_prompt", False) token_pooling = cfg.get("token_pooling",True) use_grad_checkpoint_llm = cfg.get("use_grad_checkpoint_llm", False) max_context_len = cfg.get("max_context_len", 3800) remove_template = cfg.get("remove_template", False) model = cls( vit_model=vit_model, img_size=img_size, drop_path_rate=drop_path_rate, use_grad_checkpoint=use_grad_checkpoint, vit_precision=vit_precision, freeze_vit=freeze_vit, llama_model=llama_model, prompt_path=prompt_path, prompt_template=prompt_template, max_txt_len=max_txt_len, low_resource=low_resource, end_sym=end_sym, lora_r = lora_r, lora_alpha = lora_alpha, chat_template = chat_template, system_prompt = system_prompt, token_pooling = token_pooling, use_grad_checkpoint_llm=use_grad_checkpoint_llm, max_context_len=max_context_len, remove_template = remove_template ) ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4 if ckpt_path: print("Load Minigpt-4-LLM Checkpoint: {}".format(ckpt_path)) ckpt = torch.load(ckpt_path, map_location="cpu") msg = model.load_state_dict(ckpt['model'], strict=False) return model def assign_imgs(batched_instruct_list, batched_img_embeds): '''this function is used when the data is interleaved. the interlevaed data is separated, and this function assign corresponding image embeddings to each segment''' if len(batched_img_embeds.shape) == 3: batched_img_embeds = batched_img_embeds[:, None] batched_assigned = [] for instruct_list, img_embeds in zip(batched_instruct_list, batched_img_embeds): img_idx = 0 assigned_img = [] n_assigned = [] for instruct in instruct_list: n_img = instruct.count('') if n_img > 0: # this instruction include images. assigned_img.append(img_embeds[None, img_idx:img_idx+n_img]) img_idx += n_img n_assigned.append(n_img) else: # this instruction doesn't include images assigned_img.append(None) n_assigned.append(None) batched_assigned.append(assigned_img) return batched_assigned