import time import base64 import gradio as gr from sentence_transformers import SentenceTransformer import httpx import json import os import requests import urllib from os import path from pydub import AudioSegment #img_to_text = gr.Blocks.load(name="spaces/pharma/CLIP-Interrogator") img_to_text = gr.Blocks.load(name="spaces/fffiloni/CLIP-Interrogator-2") from share_btn import community_icon_html, loading_icon_html, share_js def get_prompts(uploaded_image, track_duration, gen_intensity, gen_mode): print("calling clip interrogator") #prompt = img_to_text(uploaded_image, "ViT-L (best for Stable Diffusion 1.*)", "fast", fn_index=1)[0] prompt = img_to_text(uploaded_image, 'fast', 4, fn_index=1)[0] print(prompt) music_result = generate_track_by_prompt(prompt, track_duration, gen_intensity, gen_mode) print(music_result) return music_result[0], gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) from utils import get_tags_for_prompts, get_mubert_tags_embeddings, get_pat minilm = SentenceTransformer('all-MiniLM-L6-v2') mubert_tags_embeddings = get_mubert_tags_embeddings(minilm) def get_track_by_tags(tags, pat, duration, gen_intensity, gen_mode, maxit=20): r = httpx.post('https://api-b2b.mubert.com/v2/RecordTrackTTM', json={ "method": "RecordTrackTTM", "params": { "pat": pat, "duration": duration, "format": "wav", "intensity":gen_intensity, "tags": tags, "mode": gen_mode } }) rdata = json.loads(r.text) assert rdata['status'] == 1, rdata['error']['text'] trackurl = rdata['data']['tasks'][0]['download_link'] print('Generating track ', end='') for i in range(maxit): r = httpx.get(trackurl) if r.status_code == 200: return trackurl time.sleep(1) def generate_track_by_prompt(prompt, duration, gen_intensity, gen_mode): try: pat = get_pat("prodia@prodia.com") _, tags = get_tags_for_prompts(minilm, mubert_tags_embeddings, [prompt, ])[0] result = get_track_by_tags(tags, pat, int(duration), gen_intensity, gen_mode) print(result) return result, ",".join(tags), "Success" except Exception as e: return None, "", str(e) def convert_mp3_to_wav(mp3_filepath): url = mp3_filepath save_as = "file.mp3" data = urllib.request.urlopen(url) f = open(save_as,'wb') f.write(data.read()) f.close() wave_file="file.wav" sound = AudioSegment.from_mp3(save_as) sound.export(wave_file, format="wav") return wave_file article = """
You may also like:
Sends an image in to CLIP Interrogator to generate a text prompt which is then run through Mubert text-to-music to generate music from the input image!