import gradio as gr #import requests from PIL import Image import os from share_btn import community_icon_html, loading_icon_html, share_js token = os.environ.get('HF_TOKEN') whisper_to_gpt = gr.Blocks.load(name="spaces/fffiloni/whisper-to-chatGPT") tts = gr.Interface.load(name="spaces/Flux9665/IMS-Toucan") talking_face = gr.Blocks.load(name="spaces/fffiloni/one-shot-talking-face", api_key=token) def infer(audio): whisper_to_gpt_response = whisper_to_gpt(audio, "translate", fn_index=0) #print(gpt_response) audio_response = tts(whisper_to_gpt_response[1], "English Text", "English Accent", "English Speaker's Voice", fn_index=0) #image = Image.open(r"wise_woman_portrait.png") portrait_link = talking_face("wise_woman_portrait.png", audio_response, fn_index=0) #portrait_response = requests.get(portrait_link, headers={'Authorization': 'Bearer ' + token}) #print(portrait_response.text) return whisper_to_gpt_response[0], portrait_link, gr.update(visible=True) title = """

GPT Talking Portrait

Use Whisper to ask, alive portrait responds !

""" with gr.Blocks(css="style.css") as demo: with gr.Column(elem_id="col-container"): gr.HTML(title) gpt_response = gr.Video(label="Talking Portrait response", elem_id="video_out") with gr.Column(elem_id="col-container-2"): record_input = gr.Audio(source="microphone",type="filepath", label="Audio input", show_label=True, elem_id="record_btn") whisper_tr = gr.Textbox(label="whisper english translation", elem_id="text_inp") send_btn = gr.Button("Send my request !") with gr.Group(elem_id="share-btn-container", visible=False) as share_group: community_icon = gr.HTML(community_icon_html) loading_icon = gr.HTML(loading_icon_html) share_button = gr.Button("Share to community", elem_id="share-btn") send_btn.click(infer, inputs=[record_input], outputs=[whisper_tr, gpt_response, share_group]) share_button.click(None, [], [], _js=share_js) demo.queue(max_size=32, concurrency_count=20).launch(debug=True)