Spaces:
Running
on
L40S
Running
on
L40S
File size: 2,216 Bytes
bfed184 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import random
import numpy as np
import torch
import matplotlib.pyplot as plt
from PIL import Image
def merge_lists_by_index(list1, list2):
# Check if both lists have the same number of elements
if len(list1) != len(list2):
raise ValueError("Both lists should have the same number of elements.")
# Merge the lists by concatenating strings at the same index
merged_list = [string1 + '. ' + string2 for string1, string2 in zip(list1, list2)]
return merged_list
def plot_x_y(x, y, x_label, y_label, save_path, **kwargs):
plt.plot( x , y, **kwargs)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.legend()
plt.savefig(save_path)
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# count # of param for a list of module
def count_param(module_list):
return sum(x.numel() for module in module_list for x in module.parameters()) / 10**6
# display the peak memory of cuda
def print_peak_memory(prefix, device):
if device == 0:
print(f"{prefix}: {torch.cuda.max_memory_allocated(device) // 1e6}MB ")
def anal_tensor(tensor, name):
sent = f" name: {name} mean: {tensor.mean().item()} std: {tensor.std().item()} min: {tensor.min().item()} max: {tensor.max().item()}"
print(sent)
def split(lst, split_nbr):
div = len(lst) // split_nbr
rest = len(lst) % split_nbr
results = []
start, end = 0, div
while start < len(lst):
if rest >= 1:
end += 1
rest -= 1
results.append(lst[start:end])
start, end = end, end+div
return results
def chunk(iterable, chunk_size):
ret = []
for record in iterable:
ret.append(record)
if len(ret) == chunk_size:
yield ret
ret = []
if ret:
yield ret
def image_concat_h(im1, im2):
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width, 0))
return dst
def image_concat_v(im1, im2):
dst = Image.new('RGB', (im1.width, im1.height + im2.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (0, im1.height))
return dst
|