Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
import torch | |
from hydra import compose | |
from hydra.utils import instantiate | |
from omegaconf import OmegaConf | |
def build_sam2( | |
config_file, | |
ckpt_path=None, | |
device="cuda", | |
mode="eval", | |
hydra_overrides_extra=[], | |
apply_postprocessing=True, | |
): | |
if apply_postprocessing: | |
hydra_overrides_extra = hydra_overrides_extra.copy() | |
hydra_overrides_extra += [ | |
# dynamically fall back to multi-mask if the single mask is not stable | |
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", | |
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", | |
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", | |
] | |
# Read config and init model | |
cfg = compose(config_name=config_file, overrides=hydra_overrides_extra) | |
OmegaConf.resolve(cfg) | |
model = instantiate(cfg.model, _recursive_=True) | |
_load_checkpoint(model, ckpt_path) | |
model = model.to(device) | |
if mode == "eval": | |
model.eval() | |
return model | |
def build_sam2_video_predictor( | |
config_file, | |
ckpt_path=None, | |
device="cuda", | |
mode="eval", | |
hydra_overrides_extra=[], | |
apply_postprocessing=True, | |
): | |
hydra_overrides = [ | |
"++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor", | |
] | |
if apply_postprocessing: | |
hydra_overrides_extra = hydra_overrides_extra.copy() | |
hydra_overrides_extra += [ | |
# dynamically fall back to multi-mask if the single mask is not stable | |
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", | |
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", | |
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", | |
# the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking | |
"++model.binarize_mask_from_pts_for_mem_enc=true", | |
# fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution) | |
"++model.fill_hole_area=8", | |
] | |
hydra_overrides.extend(hydra_overrides_extra) | |
# Read config and init model | |
cfg = compose(config_name=config_file, overrides=hydra_overrides) | |
OmegaConf.resolve(cfg) | |
model = instantiate(cfg.model, _recursive_=True) | |
_load_checkpoint(model, ckpt_path) | |
model = model.to(device) | |
if mode == "eval": | |
model.eval() | |
return model | |
def _load_checkpoint(model, ckpt_path): | |
if ckpt_path is not None: | |
sd = torch.load(ckpt_path, map_location="cpu")["model"] | |
missing_keys, unexpected_keys = model.load_state_dict(sd) | |
if missing_keys: | |
logging.error(missing_keys) | |
raise RuntimeError() | |
if unexpected_keys: | |
logging.error(unexpected_keys) | |
raise RuntimeError() | |
logging.info("Loaded checkpoint sucessfully") | |