import torch.nn as nn from .net_utils import single_conv, double_conv, double_conv_down, double_conv_up, PosEnSine from .transformer_basics import OurMultiheadAttention class TransformerDecoderUnit(nn.Module): def __init__(self, feat_dim, n_head=8, pos_en_flag=True, attn_type='softmax', P=None): super(TransformerDecoderUnit, self).__init__() self.feat_dim = feat_dim self.attn_type = attn_type self.pos_en_flag = pos_en_flag self.P = P self.pos_en = PosEnSine(self.feat_dim // 2) self.attn = OurMultiheadAttention(feat_dim, n_head) # cross-attention self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) self.activation = nn.ReLU(inplace=True) self.norm = nn.BatchNorm2d(self.feat_dim) def forward(self, q, k, v): if self.pos_en_flag: q_pos_embed = self.pos_en(q) k_pos_embed = self.pos_en(k) else: q_pos_embed = 0 k_pos_embed = 0 # cross-multi-head attention out = self.attn( q=q + q_pos_embed, k=k + k_pos_embed, v=v, attn_type=self.attn_type, P=self.P )[0] # feed forward out2 = self.linear2(self.activation(self.linear1(out))) out = out + out2 out = self.norm(out) return out class Unet(nn.Module): def __init__(self, in_ch, feat_ch, out_ch): super().__init__() self.conv_in = single_conv(in_ch, feat_ch) self.conv1 = double_conv_down(feat_ch, feat_ch) self.conv2 = double_conv_down(feat_ch, feat_ch) self.conv3 = double_conv(feat_ch, feat_ch) self.conv4 = double_conv_up(feat_ch, feat_ch) self.conv5 = double_conv_up(feat_ch, feat_ch) self.conv6 = double_conv(feat_ch, out_ch) def forward(self, x): feat0 = self.conv_in(x) # H feat1 = self.conv1(feat0) # H/2 feat2 = self.conv2(feat1) # H/4 feat3 = self.conv3(feat2) # H/4 feat3 = feat3 + feat2 # H/4 feat4 = self.conv4(feat3) # H/2 feat4 = feat4 + feat1 # H/2 feat5 = self.conv5(feat4) # H feat5 = feat5 + feat0 # H feat6 = self.conv6(feat5) return feat0, feat1, feat2, feat3, feat4, feat6 class Texformer(nn.Module): def __init__(self, opts): super().__init__() self.feat_dim = opts.feat_dim src_ch = opts.src_ch tgt_ch = opts.tgt_ch out_ch = opts.out_ch self.mask_fusion = opts.mask_fusion if not self.mask_fusion: v_ch = out_ch else: v_ch = 2 + 3 self.unet_q = Unet(tgt_ch, self.feat_dim, self.feat_dim) self.unet_k = Unet(src_ch, self.feat_dim, self.feat_dim) self.unet_v = Unet(v_ch, self.feat_dim, self.feat_dim) self.trans_dec = nn.ModuleList( [ None, None, None, TransformerDecoderUnit(self.feat_dim, opts.nhead, True, 'softmax'), TransformerDecoderUnit(self.feat_dim, opts.nhead, True, 'dotproduct'), TransformerDecoderUnit(self.feat_dim, opts.nhead, True, 'dotproduct') ] ) self.conv0 = double_conv(self.feat_dim, self.feat_dim) self.conv1 = double_conv_down(self.feat_dim, self.feat_dim) self.conv2 = double_conv_down(self.feat_dim, self.feat_dim) self.conv3 = double_conv(self.feat_dim, self.feat_dim) self.conv4 = double_conv_up(self.feat_dim, self.feat_dim) self.conv5 = double_conv_up(self.feat_dim, self.feat_dim) if not self.mask_fusion: self.conv6 = nn.Sequential( single_conv(self.feat_dim, self.feat_dim), nn.Conv2d(self.feat_dim, out_ch, 3, 1, 1) ) else: self.conv6 = nn.Sequential( single_conv(self.feat_dim, self.feat_dim), nn.Conv2d(self.feat_dim, 2 + 3 + 1, 3, 1, 1) ) # mask*flow-sampling + (1-mask)*rgb self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() def forward(self, q, k, v): print('qkv', q.shape, k.shape, v.shape) q_feat = self.unet_q(q) k_feat = self.unet_k(k) v_feat = self.unet_v(v) print('q_feat', len(q_feat)) outputs = [] for i in range(3, len(q_feat)): print(i, q_feat[i].shape, k_feat[i].shape, v_feat[i].shape) outputs.append(self.trans_dec[i](q_feat[i], k_feat[i], v_feat[i])) print('outputs', outputs[-1].shape) f0 = self.conv0(outputs[2]) # H f1 = self.conv1(f0) # H/2 f1 = f1 + outputs[1] f2 = self.conv2(f1) # H/4 f2 = f2 + outputs[0] f3 = self.conv3(f2) # H/4 f3 = f3 + outputs[0] + f2 f4 = self.conv4(f3) # H/2 f4 = f4 + outputs[1] + f1 f5 = self.conv5(f4) # H f5 = f5 + outputs[2] + f0 if not self.mask_fusion: out = self.tanh(self.conv6(f5)) else: out_ = self.conv6(f5) out = [self.tanh(out_[:, :2]), self.tanh(out_[:, 2:5]), self.sigmoid(out_[:, 5:])] return out