# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de from lib.net.net_util import * import torch.nn as nn import torch.nn.functional as F class HourGlass(nn.Module): def __init__(self, num_modules, depth, num_features, opt): super(HourGlass, self).__init__() self.num_modules = num_modules self.depth = depth self.features = num_features self.opt = opt self._generate_network(self.depth) def _generate_network(self, level): self.add_module('b1_' + str(level), ConvBlock(self.features, self.features, self.opt)) self.add_module('b2_' + str(level), ConvBlock(self.features, self.features, self.opt)) if level > 1: self._generate_network(level - 1) else: self.add_module('b2_plus_' + str(level), ConvBlock(self.features, self.features, self.opt)) self.add_module('b3_' + str(level), ConvBlock(self.features, self.features, self.opt)) def _forward(self, level, inp): # Upper branch up1 = inp up1 = self._modules['b1_' + str(level)](up1) # Lower branch low1 = F.avg_pool2d(inp, 2, stride=2) low1 = self._modules['b2_' + str(level)](low1) if level > 1: low2 = self._forward(level - 1, low1) else: low2 = low1 low2 = self._modules['b2_plus_' + str(level)](low2) low3 = low2 low3 = self._modules['b3_' + str(level)](low3) # NOTE: for newer PyTorch (1.3~), it seems that training results are degraded due to implementation diff in F.grid_sample # if the pretrained model behaves weirdly, switch with the commented line. # NOTE: I also found that "bicubic" works better. up2 = F.interpolate(low3, scale_factor=2, mode='bicubic', align_corners=True) # up2 = F.interpolate(low3, scale_factor=2, mode='nearest) return up1 + up2 def forward(self, x): return self._forward(self.depth, x) class HGFilter(nn.Module): def __init__(self, opt, num_modules, in_dim): super(HGFilter, self).__init__() self.num_modules = num_modules self.opt = opt [k, s, d, p] = self.opt.conv1 # self.conv1 = nn.Conv2d(in_dim, 64, kernel_size=7, stride=2, padding=3) self.conv1 = nn.Conv2d(in_dim, 64, kernel_size=k, stride=s, dilation=d, padding=p) if self.opt.norm == 'batch': self.bn1 = nn.BatchNorm2d(64) elif self.opt.norm == 'group': self.bn1 = nn.GroupNorm(32, 64) if self.opt.hg_down == 'conv64': self.conv2 = ConvBlock(64, 64, self.opt) self.down_conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1) elif self.opt.hg_down == 'conv128': self.conv2 = ConvBlock(64, 128, self.opt) self.down_conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1) elif self.opt.hg_down == 'ave_pool': self.conv2 = ConvBlock(64, 128, self.opt) else: raise NameError('Unknown Fan Filter setting!') self.conv3 = ConvBlock(128, 128, self.opt) self.conv4 = ConvBlock(128, 256, self.opt) # Stacking part for hg_module in range(self.num_modules): self.add_module('m' + str(hg_module), HourGlass(1, opt.num_hourglass, 256, self.opt)) self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256, self.opt)) self.add_module( 'conv_last' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) if self.opt.norm == 'batch': self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256)) elif self.opt.norm == 'group': self.add_module('bn_end' + str(hg_module), nn.GroupNorm(32, 256)) self.add_module( 'l' + str(hg_module), nn.Conv2d(256, opt.hourglass_dim, kernel_size=1, stride=1, padding=0)) if hg_module < self.num_modules - 1: self.add_module( 'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) self.add_module( 'al' + str(hg_module), nn.Conv2d(opt.hourglass_dim, 256, kernel_size=1, stride=1, padding=0)) def forward(self, x): x = F.relu(self.bn1(self.conv1(x)), True) tmpx = x if self.opt.hg_down == 'ave_pool': x = F.avg_pool2d(self.conv2(x), 2, stride=2) elif self.opt.hg_down in ['conv64', 'conv128']: x = self.conv2(x) x = self.down_conv2(x) else: raise NameError('Unknown Fan Filter setting!') x = self.conv3(x) x = self.conv4(x) previous = x outputs = [] for i in range(self.num_modules): hg = self._modules['m' + str(i)](previous) ll = hg ll = self._modules['top_m_' + str(i)](ll) ll = F.relu( self._modules['bn_end' + str(i)]( self._modules['conv_last' + str(i)](ll)), True) # Predict heatmaps tmp_out = self._modules['l' + str(i)](ll) outputs.append(tmp_out) if i < self.num_modules - 1: ll = self._modules['bl' + str(i)](ll) tmp_out_ = self._modules['al' + str(i)](tmp_out) previous = previous + ll + tmp_out_ return outputs class FuseHGFilter(nn.Module): def __init__(self, opt, num_modules, in_dim): super(FuseHGFilter, self).__init__() self.num_modules = num_modules self.opt = opt [k, s, d, p] = self.opt.conv1 # self.conv1 = nn.Conv2d(in_dim, 64, kernel_size=7, stride=2, padding=3) self.conv1 = nn.Conv2d(in_dim, 64, kernel_size=k, stride=s, dilation=d, padding=p) if self.opt.norm == 'batch': self.bn1 = nn.BatchNorm2d(64) elif self.opt.norm == 'group': self.bn1 = nn.GroupNorm(32, 64) self.conv2 = ConvBlock(64, 128, self.opt) self.down_conv2 = nn.Conv2d(128, 96, kernel_size=3, stride=2, padding=1) # elif self.opt.hg_down == 'conv128': # self.conv2 = ConvBlock(64, 128, self.opt) # self.down_conv2 = nn.Conv2d(128, # 128, # kernel_size=3, # stride=2, # padding=1) dim=96+32 self.conv3 = ConvBlock(dim, dim, self.opt) self.conv4 = ConvBlock(dim, 256, self.opt) # Stacking part for hg_module in range(self.num_modules): self.add_module('m' + str(hg_module), HourGlass(1, opt.num_hourglass, 256, self.opt)) self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256, self.opt)) self.add_module( 'conv_last' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) if self.opt.norm == 'batch': self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256)) elif self.opt.norm == 'group': self.add_module('bn_end' + str(hg_module), nn.GroupNorm(32, 256)) hourglass_dim=256 self.add_module( 'l' + str(hg_module), nn.Conv2d(256, hourglass_dim, kernel_size=1, stride=1, padding=0)) if hg_module < self.num_modules - 1: self.add_module( 'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) self.add_module( 'al' + str(hg_module), nn.Conv2d(hourglass_dim, 256, kernel_size=1, stride=1, padding=0)) self.up_conv=nn.ConvTranspose2d(hourglass_dim,64,kernel_size=2,stride=2) def forward(self, x,plane): x = F.relu(self.bn1(self.conv1(x)), True) # 64*256*256 tmpx = x x = self.conv2(x) x = self.down_conv2(x) x=torch.cat([x,plane],1) # 128*128*128 x = self.conv3(x) x = self.conv4(x) previous = x outputs = [] for i in range(self.num_modules): hg = self._modules['m' + str(i)](previous) ll = hg ll = self._modules['top_m_' + str(i)](ll) ll = F.relu( self._modules['bn_end' + str(i)]( self._modules['conv_last' + str(i)](ll)), True) # Predict heatmaps tmp_out = self._modules['l' + str(i)](ll) outputs.append(tmp_out) if i < self.num_modules - 1: ll = self._modules['bl' + str(i)](ll) tmp_out_ = self._modules['al' + str(i)](tmp_out) previous = previous + ll + tmp_out_ out=self.up_conv(outputs[-1]) return out