# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import random import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms.functional as TF from torch.utils.data import Dataset import kiui from core.options import Options from core.utils import get_rays, grid_distortion, orbit_camera_jitter from kiui.cam import orbit_camera import tarfile from io import BytesIO IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) def load_np_array_from_tar(tar, path): array_file = BytesIO() array_file.write(tar.extractfile(path).read()) array_file.seek(0) return np.load(array_file) class ObjaverseDataset(Dataset): def _warn(self): raise NotImplementedError('this dataset is just an example and cannot be used directly, you should modify it to your own setting! (search keyword TODO)') def __init__(self, opt: Options, training=True, evaluating=False): self.opt = opt self.training = training self.evaluating = evaluating self.items = [] with open(self.opt.datalist, 'r') as f: for line in f.readlines(): self.items.append(line.strip()) anim_map = {} for x in self.items: k = x.split('-')[1] if k in anim_map: anim_map[k] += '|'+x else: anim_map[k] = x self.items = list(anim_map.values()) # naive split if self.training: self.items = self.items[:-self.opt.batch_size] elif self.evaluating: self.items = self.items[::1000] else: self.items = self.items[-self.opt.batch_size:] # default camera intrinsics self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy)) self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32) self.proj_matrix[0, 0] = 1 / self.tan_half_fov self.proj_matrix[1, 1] = 1 / self.tan_half_fov self.proj_matrix[2, 2] = (self.opt.zfar + self.opt.znear) / (self.opt.zfar - self.opt.znear) self.proj_matrix[3, 2] = - (self.opt.zfar * self.opt.znear) / (self.opt.zfar - self.opt.znear) self.proj_matrix[2, 3] = 1 def __len__(self): return len(self.items) def _get_batch(self, idx): if self.training: uid = random.choice(self.items[idx].split('|')) else: uid = self.items[idx].split('|')[0] results = {} # load num_views images images = [] masks = [] cam_poses = [] if self.training and self.opt.shuffle_input: vids = np.random.permutation(np.arange(32, 48))[:self.opt.num_input_views].tolist() + np.random.permutation(32).tolist() else: vids = np.arange(32, 48, 4).tolist() + np.arange(32).tolist() random_tar_name = 'random_clip/' + uid fixed_16_tar_name = 'fixed_16_clip/' + uid local_random_tar_name = os.environ["DATA_HOME"] + random_tar_name.replace('/', '-') local_fixed_16_tar_name = os.environ["DATA_HOME"] + fixed_16_tar_name.replace('/', '-') tar_random = tarfile.open(local_random_tar_name) tar_fixed = tarfile.open(local_fixed_16_tar_name) T = self.opt.num_frames for t_idx in range(T): t = t_idx vid_cnt = 0 for vid in vids: if vid >= 32: vid = vid % 32 tar = tar_fixed else: tar = tar_random image_path = os.path.join('.', f'{vid:03d}/img', f'{t:03d}.jpg') mask_path = os.path.join('.', f'{vid:03d}/mask', f'{t:03d}.png') elevation_path = os.path.join('.', f'{vid:03d}/camera', f'elevation.npy') rotation_path = os.path.join('.', f'{vid:03d}/camera', f'rotation.npy') image = np.frombuffer(tar.extractfile(image_path).read(), np.uint8) image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1] azi = load_np_array_from_tar(tar, rotation_path)[t, None] elevation = load_np_array_from_tar(tar, elevation_path)[t, None] * -1 # to align with pretrained LGM azi = float(azi) elevation = float(elevation) c2w = torch.from_numpy(orbit_camera(elevation, azi, radius=1.5, opengl=True)) image = image.permute(2, 0, 1) # [4, 512, 512] mask = np.frombuffer(tar.extractfile(mask_path).read(), np.uint8) mask = torch.from_numpy(cv2.imdecode(mask, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255).unsqueeze(0) # [512, 512, 4] in [0, 1] image = F.interpolate(image.unsqueeze(0), size=(512, 512), mode='nearest').squeeze(0) mask = F.interpolate(mask.unsqueeze(0), size=(512, 512), mode='nearest').squeeze(0) image = image[:3] * mask + (1 - mask) # [3, 512, 512], to white bg image = image[[2,1,0]].contiguous() # bgr to rgb images.append(image) masks.append(mask.squeeze(0)) cam_poses.append(c2w) vid_cnt += 1 if vid_cnt == self.opt.num_views: break if vid_cnt < self.opt.num_views: print(f'[WARN] dataset {uid}: not enough valid views, only {vid_cnt} views found!') n = self.opt.num_views - vid_cnt images = images + [images[-1]] * n masks = masks + [masks[-1]] * n cam_poses = cam_poses + [cam_poses[-1]] * n images = torch.stack(images, dim=0) # [V, C, H, W] masks = torch.stack(masks, dim=0) # [V, H, W] cam_poses = torch.stack(cam_poses, dim=0) # [V, 4, 4] # normalized camera feats as in paper (transform the first pose to a fixed position) transform = torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, self.opt.cam_radius], [0, 0, 0, 1]], dtype=torch.float32) @ torch.inverse(cam_poses[0]) cam_poses = transform.unsqueeze(0) @ cam_poses # [V, 4, 4] images_input = F.interpolate(images.reshape(T, self.opt.num_views, *images.shape[1:])[:, :self.opt.num_input_views].reshape(-1, *images.shape[1:]).clone(), size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False) # [V, C, H, W] cam_poses_input = cam_poses.reshape(T, self.opt.num_views, *cam_poses.shape[1:])[:, :self.opt.num_input_views].reshape(-1, *cam_poses.shape[1:]).clone() # data augmentation if self.training: images_input = images_input.reshape(T, self.opt.num_input_views, *images_input.shape[1:]) cam_poses_input = cam_poses_input.reshape(T, self.opt.num_input_views, *cam_poses.shape[1:]) # apply random grid distortion to simulate 3D inconsistency if random.random() < self.opt.prob_grid_distortion: for t in range(T): images_input[t, 1:] = grid_distortion(images_input[t, 1:]) # apply camera jittering (only to input!) if random.random() < self.opt.prob_cam_jitter: for t in range(T): cam_poses_input[t, 1:] = orbit_camera_jitter(cam_poses_input[t, 1:]) images_input = images_input.reshape(-1, *images_input.shape[2:]) cam_poses_input = cam_poses_input.reshape(-1, *cam_poses.shape[1:]) # masking other views images_input = images_input.reshape(T, self.opt.num_input_views, *images_input.shape[1:]) images_input[1:, 1:] = images_input[0:1, 1:] images_input = images_input.reshape(-1, *images_input.shape[2:]) cam_poses_input = cam_poses_input.reshape(T, self.opt.num_input_views, *cam_poses.shape[1:]) cam_poses_input[1:, 1:] = cam_poses_input[0:1, 1:] cam_poses_input = cam_poses_input.reshape(-1, *cam_poses.shape[1:]) images_input = TF.normalize(images_input, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) # resize render ground-truth images, range still in [0, 1] results['images_output'] = F.interpolate(images, size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, C, output_size, output_size] results['masks_output'] = F.interpolate(masks.unsqueeze(1), size=(self.opt.output_size, self.opt.output_size), mode='bilinear', align_corners=False) # [V, 1, output_size, output_size] # build rays for input views rays_embeddings = [] for i in range(self.opt.num_input_views * T): rays_o, rays_d = get_rays(cam_poses_input[i], self.opt.input_size, self.opt.input_size, self.opt.fovy) # [h, w, 3] rays_plucker = torch.cat([torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1) # [h, w, 6] rays_embeddings.append(rays_plucker) rays_embeddings = torch.stack(rays_embeddings, dim=0).permute(0, 3, 1, 2).contiguous() # [V, 6, h, w] final_input = torch.cat([images_input, rays_embeddings], dim=1) # [V=4, 9, H, W] results['input'] = final_input # opengl to colmap camera for gaussian renderer cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction # cameras needed by gaussian rasterizer cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4] cam_view_proj = cam_view @ self.proj_matrix # [V, 4, 4] cam_pos = - cam_poses[:, :3, 3] # [V, 3] results['cam_view'] = cam_view results['cam_view_proj'] = cam_view_proj results['cam_pos'] = cam_pos return results def __getitem__(self, idx): while True: try: results = self._get_batch(idx) break except Exception as e: print(f"{e}") idx = random.randint(0, len(self.items) - 1) return results