import torch print(torch.__version__) print(torch.version.cuda) print(torch.cuda.is_available()) import os, subprocess import uuid, tempfile import gradio as gr from huggingface_hub import snapshot_download os.makedirs("pretrained", exist_ok=True) snapshot_download( repo_id = "jiawei011/L4GM", local_dir = "./pretrained" ) # Folder containing example images examples_folder = "data_test" # Retrieve all file paths in the folder video_examples = [ os.path.join(examples_folder, file) for file in os.listdir(examples_folder) if os.path.isfile(os.path.join(examples_folder, file)) ] def generate(input_video): #--test_path data_test/otter-on-surfboard_fg.mp4 workdir = "results" pretrained_model = "pretrained/recon.safetensors" num_frames = 1 test_path = input_video try: # Run the inference command subprocess.run( [ "python", "infer_3d.py", "big", "--workspace", f"{workdir}", "--resume", f"{pretrained_model}", "--num_frames", f"{num_frames}", "--test_path", f"{test_path}", ], check=True ) # Retrieve the file name without the extension #removed_bg_file_name = os.path.splitext(os.path.basename(removed_bg_path))[0] output_videos = glob(os.path.join(f"{workdir}", "*.mp4")) return output_videos except subprocess.CalledProcessError as e: return f"Error during inference: {str(e)}" with gr.Blocks() as demo: with gr.Column(): with gr.Row(): with gr.Column(): input_video = gr.Video(label="Input Video") submit_btn = gr.Button("Submit") with gr.Column(): output_result = gr.Video(label="Result") gr.Examples( examples = video_examples, inputs = [input_video] ) submit_btn.click( fn = generate, inputs = [input_video], outputs = [output_result] ) demo.queue().launch(show_api=False, show_error=True)