import gradio as gr from gradio_client import Client import os hf_token = os.environ.get("HF_TKN") from style_template import styles STYLE_NAMES = list(styles.keys()) DEFAULT_STYLE_NAME = "(No style)" def get_instantID(portrait_in, condition_pose, prompt, style): client = Client("https://fffiloni-instantid.hf.space/", hf_token=hf_token) negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green" result = client.predict( portrait_in, # filepath in 'Upload a photo of your face' Image component condition_pose, # filepath in 'Upload a reference pose image (optional)' Image component prompt, # str in 'Prompt' Textbox component negative_prompt, # str in 'Negative Prompt' Textbox component style, # Literal['(No style)', 'Watercolor', 'Film Noir', 'Neon', 'Jungle', 'Mars', 'Vibrant Color', 'Snow', 'Line art'] in 'Style template' Dropdown component True, # bool in 'Enhance non-face region' Checkbox component 20, # float (numeric value between 20 and 100) in 'Number of sample steps' Slider component 0.8, # float (numeric value between 0 and 1.5) in 'IdentityNet strength (for fedility)' Slider component 0.8, # float (numeric value between 0 and 1.5) in 'Image adapter strength (for detail)' Slider component 5, # float (numeric value between 0.1 and 10.0) in 'Guidance scale' Slider component 0, # float (numeric value between 0 and 2147483647) in 'Seed' Slider component True, # bool in 'Randomize seed' Checkbox component api_name="/generate_image" ) print(result) return result[0] def get_video_i2vgen(image_in, prompt): client = Client("https://modelscope-i2vgen-xl.hf.space/") result = client.predict( image_in, prompt, fn_index=1 ) print(result) return result def get_video_svd(image_in): from gradio_client import Client client = Client("https://multimodalart-stable-video-diffusion.hf.space/--replicas/ej45m/") result = client.predict( image_in, # filepath in 'Upload your image' Image component 0, # float (numeric value between 0 and 9223372036854775807) in 'Seed' Slider component True, # bool in 'Randomize seed' Checkbox component 127, # float (numeric value between 1 and 255) in 'Motion bucket id' Slider component 6, # float (numeric value between 5 and 30) in 'Frames per second' Slider component api_name="/video" ) print(result) return result[0]["video"] def load_sample_shot(camera_shot): if camera_shot == "close-up": conditional_pose = "camera_shots/close_up_shot.jpeg" elif camera_shot == "medium close-up": conditional_pose = "camera_shots/medium_close_up.jpeg" elif camera_shot == "medium shot": conditional_pose = "camera_shots/medium_shot.png" elif camera_shot == "cowboy shot": conditional_pose = "camera_shots/cowboy_shot.jpeg" elif camera_shot == "medium full shot": conditional_pose = "camera_shots/medium_full_shot.png" elif camera_shot == "full shot": conditional_pose = "camera_shots/full_shot.jpeg" return conditional_pose def use_custom_cond(): return "custom" def infer(image_in, camera_shot, conditional_pose, prompt, style, chosen_model): if camera_shot == "custom": if conditional_pose != None: conditional_pose = conditional_pose else : raise gr.Error("No custom conditional shot found !") iid_img = get_instantID(image_in, conditional_pose, prompt, style) if chosen_model == "i2vgen-xl" : video_res = get_video_i2vgen(iid_img, prompt) elif chosen_model == "stable-video" : video_res = get_video_svd(image_in) print(video_res) return video_res css = """ #col-container{ margin: 0 auto; max-width: 1080px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML("""

InstanID-2V

Generate live camera shot from input face

""") with gr.Row(): with gr.Column(): face_in = gr.Image(type="filepath", label="Face to copy") with gr.Column(): with gr.Row(): camera_shot = gr.Dropdown( label = "Camera Shot", info = "Use standard camera shots vocabulary, or drop your custom shot as conditional pose (1280*720 ratio is recommended)", choices = [ "custom", "close-up", "medium close-up", "medium shot", "cowboy shot", "medium full shot", "full shot" ], value = "custom" ) style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) condition_shot = gr.Image(type="filepath", label="Custom conditional shot (Optional)") prompt = gr.Textbox(label="Prompt") chosen_model = gr.Radio(label="Choose a model", choices=["i2vgen-xl", "stable-video"], value="i2vgen-xl", interactive=False, visible=False) with gr.Column(): submit_btn = gr.Button("Submit") video_out = gr.Video() camera_shot.change( fn = load_sample_shot, inputs = camera_shot, outputs = condition_shot, queue=False ) condition_shot.upload( fn = use_custom_cond, inputs = None, outputs = camera_shot, queue=False, ) submit_btn.click( fn = infer, inputs = [ face_in, camera_shot, condition_shot, prompt, style, chosen_model ], outputs = [ video_out ] ) demo.queue(max_size=6).launch(debug=True)