import gradio as gr import torch import os import shutil import requests import subprocess from subprocess import getoutput from huggingface_hub import snapshot_download, HfApi, create_repo api = HfApi() hf_token = os.environ.get("HF_TOKEN_WITH_WRITE_PERMISSION") def train_dreambooth_blora_sdxl(instance_data_dir, b_lora_trained_folder, instance_prompt, max_train_steps, checkpoint_steps): script_filename = "train_dreambooth_b-lora_sdxl.py" # Assuming it's in the same folder command = [ "accelerate", "launch", script_filename, # Use the local script "--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0", f"--instance_data_dir={instance_data_dir}", f"--output_dir={b_lora_trained_folder}", f"--instance_prompt={instance_prompt}", "--resolution=1024", "--rank=64", "--train_batch_size=1", "--learning_rate=5e-5", "--lr_scheduler=constant", "--lr_warmup_steps=0", f"--max_train_steps={max_train_steps}", f"--checkpointing_steps={checkpoint_steps}", "--seed=0", "--gradient_checkpointing", "--use_8bit_adam", "--mixed_precision=fp16", "--push_to_hub", f"--hub_token={hf_token}" ] try: subprocess.run(command, check=True) print("Training is finished!") except subprocess.CalledProcessError as e: print(f"An error occurred: {e}") def main(image_path, b_lora_trained_folder, instance_prompt): local_dir = "image_to_train" # Check if the directory exists and create it if necessary if not os.path.exists(local_dir): os.makedirs(local_dir) shutil.copy(image_path, local_dir) print(f"source image has been copied in {local_dir} directory") max_train_steps = 1000 checkpoint_steps = 500 train_dreambooth_blora_sdxl(local_dir, b_lora_trained_folder, instance_prompt, max_train_steps, checkpoint_steps) your_username = api.whoami(token=hf_token)["name"] return f"Done, your trained model has been stored in your models library: {your_username}/{b_lora_trained_folder}" css = """ #col-container {max-width: 780px; margin-left: auto; margin-right: auto;} """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): image = gr.Image(sources=["upload"], type="filepath") b_lora_name = gr.Textbox(label="b_lora_name", placeholder="b_lora_trained_folder") instance_prompt = gr.Textbox(label="instance prompt", placeholder="[v42]") train_btn = gr.Button("Train B-LoRa") status = gr.Textbox(label="status") train_btn.click( fn = main, inputs = [image, b_lora_name, instance_prompt], outputs = [status] ) demo.launch(debug=True)