import torch from models.r2gen import R2GenModel from PIL import Image from modules.tokenizers import Tokenizer import main import argparse import json import re from collections import Counter def parse_agrs(): parser = argparse.ArgumentParser() # Model loader settings parser.add_argument('--load', type=str, default='ckpt/checkpoint.pth', help='the path to the model weights.') parser.add_argument('--prompt', type=str, default='ckpt/prompt.pth', help='the path to the prompt weights.') # Data input settings parser.add_argument('--image_path', type=str, default='example_figs/fig1.jpg', help='the path to the test image.') parser.add_argument('--image_dir', type=str, default='data/images/', help='the path to the directory containing the data.') parser.add_argument('--ann_path', type=str, default='data/annotation.json', help='the path to the directory containing the data.') # Data loader settings parser.add_argument('--dataset_name', type=str, default='mimic_cxr', help='the dataset to be used.') parser.add_argument('--max_seq_length', type=int, default=60, help='the maximum sequence length of the reports.') parser.add_argument('--threshold', type=int, default=3, help='the cut off frequency for the words.') parser.add_argument('--num_workers', type=int, default=2, help='the number of workers for dataloader.') parser.add_argument('--batch_size', type=int, default=16, help='the number of samples for a batch') # Model settings (for visual extractor) parser.add_argument('--visual_extractor', type=str, default='resnet101', help='the visual extractor to be used.') parser.add_argument('--visual_extractor_pretrained', type=bool, default=True, help='whether to load the pretrained visual extractor') # Model settings (for Transformer) parser.add_argument('--d_model', type=int, default=512, help='the dimension of Transformer.') parser.add_argument('--d_ff', type=int, default=512, help='the dimension of FFN.') parser.add_argument('--d_vf', type=int, default=2048, help='the dimension of the patch features.') parser.add_argument('--num_heads', type=int, default=8, help='the number of heads in Transformer.') parser.add_argument('--num_layers', type=int, default=3, help='the number of layers of Transformer.') parser.add_argument('--dropout', type=float, default=0.1, help='the dropout rate of Transformer.') parser.add_argument('--logit_layers', type=int, default=1, help='the number of the logit layer.') parser.add_argument('--bos_idx', type=int, default=0, help='the index of .') parser.add_argument('--eos_idx', type=int, default=0, help='the index of .') parser.add_argument('--pad_idx', type=int, default=0, help='the index of .') parser.add_argument('--use_bn', type=int, default=0, help='whether to use batch normalization.') parser.add_argument('--drop_prob_lm', type=float, default=0.5, help='the dropout rate of the output layer.') # for Relational Memory parser.add_argument('--rm_num_slots', type=int, default=3, help='the number of memory slots.') parser.add_argument('--rm_num_heads', type=int, default=8, help='the numebr of heads in rm.') parser.add_argument('--rm_d_model', type=int, default=512, help='the dimension of rm.') # Sample related parser.add_argument('--sample_method', type=str, default='beam_search', help='the sample methods to sample a report.') parser.add_argument('--beam_size', type=int, default=3, help='the beam size when beam searching.') parser.add_argument('--temperature', type=float, default=1.0, help='the temperature when sampling.') parser.add_argument('--sample_n', type=int, default=1, help='the sample number per image.') parser.add_argument('--group_size', type=int, default=1, help='the group size.') parser.add_argument('--output_logsoftmax', type=int, default=1, help='whether to output the probabilities.') parser.add_argument('--decoding_constraint', type=int, default=0, help='whether decoding constraint.') parser.add_argument('--block_trigrams', type=int, default=1, help='whether to use block trigrams.') # Trainer settings parser.add_argument('--n_gpu', type=int, default=1, help='the number of gpus to be used.') parser.add_argument('--epochs', type=int, default=100, help='the number of training epochs.') parser.add_argument('--save_dir', type=str, default='results/iu_xray', help='the patch to save the models.') parser.add_argument('--record_dir', type=str, default='records/', help='the patch to save the results of experiments') parser.add_argument('--save_period', type=int, default=1, help='the saving period.') parser.add_argument('--monitor_mode', type=str, default='max', choices=['min', 'max'], help='whether to max or min the metric.') parser.add_argument('--monitor_metric', type=str, default='BLEU_4', help='the metric to be monitored.') parser.add_argument('--early_stop', type=int, default=50, help='the patience of training.') # Optimization parser.add_argument('--optim', type=str, default='Adam', help='the type of the optimizer.') parser.add_argument('--lr_ve', type=float, default=5e-5, help='the learning rate for the visual extractor.') parser.add_argument('--lr_ed', type=float, default=1e-4, help='the learning rate for the remaining parameters.') parser.add_argument('--weight_decay', type=float, default=5e-5, help='the weight decay.') parser.add_argument('--amsgrad', type=bool, default=True, help='.') # Learning Rate Scheduler parser.add_argument('--lr_scheduler', type=str, default='StepLR', help='the type of the learning rate scheduler.') parser.add_argument('--step_size', type=int, default=50, help='the step size of the learning rate scheduler.') parser.add_argument('--gamma', type=float, default=0.1, help='the gamma of the learning rate scheduler.') # Others parser.add_argument('--seed', type=int, default=9233, help='.') parser.add_argument('--resume', type=str, help='whether to resume the training from existing checkpoints.') args = parser.parse_args() return args args = parse_agrs() tokenizer = Tokenizer(args) image_path=args.image_path checkpoint_path = args.load image =[Image.open(image_path).convert('RGB') ] model=R2GenModel(args ,tokenizer).to('cuda' if torch.cuda.is_available() else 'cpu') state_dict = torch.load(checkpoint_path) model_state_dict = state_dict['state_dict'] model.load_state_dict(model_state_dict).to('cuda' if torch.cuda.is_available() else 'cpu') model.eval() with torch.no_grad(): output = model(image, mode='sample') reports = model.tokenizer.decode_batch(output.cpu().numpy()) print(reports)