import streamlit as st import pandas as pd import numpy as np import torch from transformers import AlbertTokenizer, AlbertModel from sklearn.metrics.pairwise import cosine_similarity # base is smaller, vs large model_size='base' tokenizer = AlbertTokenizer.from_pretrained('albert-' + model_size + '-v2') model = AlbertModel.from_pretrained('albert-' + model_size + '-v2') def get_embedding(input_text): encoded_input = tokenizer(input_text, return_tensors='pt') input_ids = encoded_input.input_ids #input_num_tokens = input_ids.shape[1] #print( "Number of input tokens: " + str(input_num_tokens)) #print("Length of input: " + str(len(input_text))) list_of_tokens = tokenizer.convert_ids_to_tokens(input_ids.view(-1).tolist()) print( "Tokens : " + ' '.join(list_of_tokens)) with torch.no_grad(): outputs = model(**encoded_input) last_hidden_states = outputs[0] sentence_embedding = torch.mean(last_hidden_states[0], dim=0) #sentence_embedding = output.last_hidden_state[0][0] return sentence_embedding.tolist() st. set_page_config(layout="wide") st.title('Upload the Address Dataset') st.markdown('Upload an Excel file to view the data in a table.') uploaded_file = st.file_uploader('Choose a file', type='xlsx') if uploaded_file is not None: data_caqh = pd.read_excel(uploaded_file, sheet_name='CAQH', dtype=str) data_ndb = pd.read_excel(uploaded_file, sheet_name='NDB', dtype=str) # Data cleaning CAQH data_caqh['postalcode'] = data_caqh['postalcode'].astype(str).apply(lambda x: x[:5] + '-' + x[5:] if len(x) > 5 and not '-' in x else x) data_caqh['full-addr'] = data_caqh['address1'].astype(str) + ', ' \ + np.where(data_caqh['address2'].isnull(), '' , data_caqh['address2'].astype(str)) \ + data_caqh['city'].astype(str) + ', '\ + data_caqh['state'].astype(str) + ', ' \ + data_caqh['postalcode'].astype(str) # Data cleaning NDB data_ndb['zip_pls_4_cd'] = data_ndb['zip_pls_4_cd'].astype(str).apply(lambda x: x if (x[-1] != '0' and x[-1] != '1') else '') data_ndb['zip_cd_zip_pls_4_cd'] = data_ndb['zip_cd'].astype(str) +\ np.where( data_ndb['zip_pls_4_cd'] == '', '', '-' \ + data_ndb['zip_pls_4_cd'].astype(str)) data_ndb['full-addr'] = data_ndb['adr_ln_1_txt'].astype(str).str.strip() + ', ' \ + data_ndb['cty_nm'].astype(str) + ', ' \ + data_ndb['st_cd'].astype(str) + ', ' + data_ndb['zip_cd_zip_pls_4_cd'] # App data_caqh['embedding'] = data_caqh['full-addr'].apply(get_embedding) data_ndb['embedding'] = data_ndb['full-addr'].apply(get_embedding) data_caqh['matched-addr'] = '' for i, row in data_caqh.iterrows(): max_similarity = 0 matched_row = None for j, ndb_row in data_ndb.iterrows(): sim = cosine_similarity([row['embedding']], [ndb_row['embedding']]) if sim > max_similarity: max_similarity = sim matched_row = ndb_row if max_similarity >= 0.98: data_caqh.at[i, 'matched-addr'] = matched_row['full-addr'] data_caqh.at[i, 'similarity-score'] = max_similarity else: data_caqh.at[i, 'matched-addr'] = 'No Matches' # Drop columns not needed for display data_caqh.drop(columns=['embedding'], inplace=True) data_ndb.drop(columns=['embedding'], inplace=True) st.header('CAQH addresses and matches') st.dataframe(data_caqh, use_container_width=True) st.header('NDB data') st.dataframe(data_ndb, use_container_width=True) # calculate the embedding of each item. #st.dataframe(data_caqh) # Do some matching #data_caqh.loc[data_caqh['full-addr'] == '1000 Vale Terrace, Vista, CA, 92084', 'matched-addr'] = '456 Main St' #time.sleep(10) #st.dataframe(data_caqh)