Spaces:
Runtime error
Runtime error
import math | |
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import torch | |
from transformers import AlbertTokenizer, AlbertModel | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from io import BytesIO | |
# base is smaller, vs large | |
model_size='base' | |
tokenizer = AlbertTokenizer.from_pretrained('albert-' + model_size + '-v2') | |
model = AlbertModel.from_pretrained('albert-' + model_size + '-v2') | |
model_sbert = SentenceTransformer('sentence-transformers/paraphrase-albert-base-v2') | |
# for regular burt 0.98 | |
similarity_threshold = 0.8 | |
def get_sbert_embedding(input_text): | |
embedding = model_sbert.encode(input_text) | |
return embedding.tolist() | |
def get_embedding(input_text): | |
encoded_input = tokenizer(input_text, return_tensors='pt') | |
input_ids = encoded_input.input_ids | |
#input_num_tokens = input_ids.shape[1] | |
#print( "Number of input tokens: " + str(input_num_tokens)) | |
#print("Length of input: " + str(len(input_text))) | |
list_of_tokens = tokenizer.convert_ids_to_tokens(input_ids.view(-1).tolist()) | |
#print( "Tokens : " + ' '.join(list_of_tokens)) | |
with torch.no_grad(): | |
outputs = model(**encoded_input) | |
last_hidden_states = outputs[0] | |
sentence_embedding = torch.mean(last_hidden_states[0], dim=0) | |
#sentence_embedding = output.last_hidden_state[0][0] | |
return sentence_embedding.tolist() | |
st.set_page_config(layout="wide") | |
st.title('Upload the Address Dataset') | |
st.markdown('Upload an Excel file to view the data in a table.') | |
uploaded_file = st.file_uploader('Choose a file', type='xlsx') | |
if uploaded_file is not None: | |
data_caqh = pd.read_excel(uploaded_file, sheet_name='CAQH', dtype=str) | |
data_ndb = pd.read_excel(uploaded_file, sheet_name='NDB', dtype=str) | |
# Data cleaning CAQH | |
data_caqh['postalcode'] = data_caqh['postalcode'].astype(str).apply(lambda x: x[:5] + '-' + x[5:] if len(x) > 5 and not '-' in x else x) | |
data_caqh['full-addr'] = data_caqh['address1'].astype(str) + ', ' \ | |
+ np.where(data_caqh['address2'].isnull(), '' , data_caqh['address2'].astype(str)+ ', ') \ | |
+ data_caqh['city'].astype(str) + ' '\ | |
+ data_caqh['state'].astype(str) + ' ' \ | |
+ data_caqh['postalcode'].astype(str) | |
st.write(f"CAQH before duplicate removal {len(data_caqh)}") | |
data_caqh.drop_duplicates(subset='full-addr',inplace=True) | |
data_caqh = data_caqh.reset_index(drop=True) # reset the index. | |
st.write(f"CAQH after duplicate removal {len(data_caqh)}") | |
# Data cleaning NDB | |
data_ndb['zip_pls_4_cd'] = data_ndb['zip_pls_4_cd'].astype(str).apply(lambda x: x if (x[-1] != '0' and x[-1] != '1') else '') | |
data_ndb['zip_cd_zip_pls_4_cd'] = data_ndb['zip_cd'].astype(str) +\ | |
np.where( data_ndb['zip_pls_4_cd'] == '', '', '-' \ | |
+ data_ndb['zip_pls_4_cd'].astype(str)) | |
data_ndb['full-addr'] = data_ndb['adr_ln_1_txt'].astype(str).str.strip() + ', ' \ | |
+ data_ndb['cty_nm'].astype(str).str.strip() + ' ' \ | |
+ data_ndb['st_cd'].astype(str) + ' ' + data_ndb['zip_cd_zip_pls_4_cd'] | |
# Calculate similarity For CAQH | |
num_items = len(data_caqh) | |
progress_bar = st.progress(0) | |
total_steps = 100 | |
step_size = math.ceil(num_items / total_steps) | |
data_caqh['embedding'] = 0 | |
embedding_col_index = data_caqh.columns.get_loc('embedding') | |
full_addr_col_index = data_caqh.columns.get_loc('full-addr') | |
for i in range(total_steps): | |
# Update progress bar | |
progress = (i + 1) / total_steps | |
# Process a batch of rows | |
start = i * step_size | |
end = start + step_size | |
stop_iter = False | |
if end >= num_items: | |
end = num_items | |
stop_iter = True | |
data_caqh.iloc[start:end, embedding_col_index] = data_caqh.iloc[start:end, full_addr_col_index].apply(get_sbert_embedding) | |
progress_bar.progress(value=progress, text=f"CAQH embeddings: {(i + 1) * step_size} processed out of {num_items}") | |
if stop_iter: | |
break | |
st.write(f"Embeddings for CAQH calculated") | |
# Calculate similarity For NDB | |
num_items = len(data_ndb) | |
progress_bar = st.progress(0) | |
total_steps = 100 | |
step_size = math.ceil(num_items / total_steps) | |
data_ndb['embedding'] = 0 | |
embedding_col_index = data_ndb.columns.get_loc('embedding') | |
full_addr_col_index = data_ndb.columns.get_loc('full-addr') | |
for i in range(total_steps): | |
# Update progress bar | |
progress = (i + 1) / total_steps | |
# Process a batch of rows | |
start = i * step_size | |
end = start + step_size | |
stop_iter = False | |
if end >= num_items: | |
end = num_items | |
stop_iter = True | |
# or get_embedding | |
data_ndb.iloc[start:end, embedding_col_index] = data_ndb.iloc[start:end, full_addr_col_index].apply(get_sbert_embedding) | |
progress_bar.progress(value=progress, text=f"NDB embeddings: {(i + 1) * step_size} processed out of {num_items}") | |
if stop_iter: | |
break | |
st.write(f"Embeddings for NDB calculated... matching") | |
progress_bar = st.progress(0) | |
num_items = len(data_caqh) | |
for i, row in data_caqh.iterrows(): | |
max_similarity = 0 | |
matched_row = None | |
for j, ndb_row in data_ndb.iterrows(): | |
sim = cosine_similarity([row['embedding']], [ndb_row['embedding']]) | |
if sim > max_similarity: | |
max_similarity = sim | |
matched_row = ndb_row | |
if max_similarity >= similarity_threshold: | |
data_caqh.at[i, 'matched-addr'] = matched_row['full-addr'] | |
data_caqh.at[i, 'similarity-score'] = max_similarity | |
else: | |
print(f"max similarity was {max_similarity}") | |
data_caqh.at[i, 'matched-addr'] = 'No Matches' | |
progress = i / num_items | |
if progress > 1.0: | |
progress = 1.0 | |
progress_bar.progress(value=progress, text=f"matching similarities - {i} done out of {num_items}") | |
# Drop columns not needed for display | |
data_caqh.drop(columns=['embedding'], inplace=True) | |
data_ndb.drop(columns=['embedding'], inplace=True) | |
st.header('CAQH addresses and matches') | |
st.dataframe(data_caqh, use_container_width=True) | |
# Calculate stats. | |
total_items = len(data_caqh) | |
item_without_matches = data_caqh['matched-addr'].value_counts().get('No Matches', 0) | |
items_with_matches = total_items - item_without_matches; | |
percent_matched = (items_with_matches/total_items)*100.0 | |
st.write(f"From total matches {total_items}, {items_with_matches} items matched, {item_without_matches} items did not match, {percent_matched:.2f}% matched") | |
# Create an in-memory binary stream | |
output = BytesIO() | |
# Save the DataFrame to the binary stream as an Excel file | |
with pd.ExcelWriter(output, engine='xlsxwriter') as writer: | |
data_caqh.to_excel(writer, sheet_name='Sheet1', index=False) | |
writer.save() | |
# Get the binary data from the stream | |
data = output.getvalue() | |
# Add a download button for the Excel file | |
st.download_button( | |
label='Download CAQH matches as Excel file', | |
data=data, | |
file_name='data.xlsx', | |
mime='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' | |
) | |
st.header('NDB data') | |
st.dataframe(data_ndb, use_container_width=True) | |