import utils from web_semantic_search_tool import WebSemanticSearchTool import os import requests from youtube_transcript_api import YouTubeTranscriptApi from bs4 import BeautifulSoup import pandas as pd from dotenv import load_dotenv from mistralai import Mistral from groq import Groq from requests.exceptions import RequestException, Timeout, TooManyRedirects from typing import List, Union from youtube_transcript_api._errors import ( TranscriptsDisabled, NoTranscriptFound, VideoUnavailable, NotTranslatable, ) from urllib.parse import urlparse, parse_qs from langchain_core.tools import tool from langchain_community.tools import BraveSearch @tool def web_search(query: str) -> str: """ Search the web using Brave Search and return the top 3 results. Before starting any search, you must first think about the TRUE necessary steps that are required to answer the question. If you need to search for information, the query should be just a few keywords that can be used to find the desired web page. If the question specifies a date, do not put the date into the query Args: query (str): The search query. Returns: str: A string containing the top 3 search results. """ api_key = os.getenv("BRAVE") tool = BraveSearch.from_api_key(api_key=api_key, search_kwargs={"count":3, "spellcheck": False}) results = tool.invoke(query) return results ''' @tool def url_search(url: str) -> str: """ Access a specific URL provided by the web_search tool call. Args: url (str): The URL to access. Returns: str: The HTML content of the accessed URL or an error message. """ try: response = requests.get(url, timeout=10) response.raise_for_status() soup = BeautifulSoup(response.text, 'html.parser') for tag in soup(['script']): tag.decompose() # Extract and return the body of the page body_content = soup.find('body') if body_content: return body_content.get_text(separator='\n', strip=True) else: return "No body content found in the accessed URL." except Timeout: return "Request timed out while trying to access the URL." except TooManyRedirects: return "Too many redirects while trying to access the URL." except RequestException as e: return f"Failed to access the URL. Error: {e}" ''' # Création du tool pour LangGraph web_search_tool_instance = WebSemanticSearchTool() @tool def url_search(question: str, url: str) -> str: """ Access a specific URL provided by the web_search tool call. Args: question (str): The question you want to answer accessing this URL. url (str): The URL to access. Returns: str: 3 chunks with the highest similarity score based on the query of the accessed URL or an error message. """ try: return web_search_tool_instance.search_semantic(question.strip(), url.strip()) except ValueError: return "Incorrect format. Use: 'your_query, http://example.com'" @tool def wiki_search(query: str, lang_tag: str = 'en', date: str = None) -> str: """ Search and extract content from a Wikipedia page, optionally retrieving a historical version. Args: query (str): The search query to look up on Wikipedia. lang_tag (str, optional): The language of the Wikipedia version to search from. Expected format: 'en' for English, 'fr' for French, 'it' for Italian etc. date (str, optional): A precise description of the desired historical version. Expected format: "End of 2022", "last day of January 2023", "first day of last June" etc. Returns: str: The textual content of the most relevant Wikipedia page. """ page_title = utils.search_wikipedia(query, lang_tag) if not page_title: return f"No results found on Wikipedia for query: {query}" if not date: content_url = f"https://{lang_tag}.wikipedia.org/wiki/{page_title}" content = utils.fetch_page_content(content_url) return content if content else f"Failed to retrieve Wikipedia page: {page_title}" versions = utils.get_history_versions(page_title, lang_tag) if not versions: return f"No historical versions found for {page_title}" load_dotenv() MISTRAL_API_KEY = os.getenv("MISTRAL") client = Mistral(api_key=MISTRAL_API_KEY) print(f"date: {date}") selected_id = utils.select_historical_version(client, versions, date) if not selected_id: return "Could not determine a valid historical version from the date provided." historical_content = utils.fetch_page_content(f"https://{lang_tag}.wikipedia.org/w/index.php?title={page_title}&oldid={selected_id}") return historical_content if historical_content else f"Failed to access the historical Wikipedia page: {selected_id}" @tool def sum_excel_cols(file_name: str, column_names: List[str]) -> float: """ Sum the values of specified columns in a pandas DataFrame read from an Excel file. This tool should NEVER be called if you're not sure which columns to sum. If you need to retrieve column names, you must do so from the output of the read_file_content tool. Args: file_name (str): The path to the Excel file. column_names (List[str]): A list of column names to sum. Column names must first be retrieved from the output of the read_file_content tool. Returns: float: The sum of the specified columns. Example: sum_excel_cols("data.xlsx", ["Column1", "Column2"]) -> 100.0 """ file_status = utils.download_file(file_name) if not os.path.exists(file_name): return f"File {file_name} does not exist." extension = os.path.splitext(file_name)[1].lower() if extension not in ['.csv', '.xlsx']: return "Unsupported file format. Please provide a CSV or XLSX file." if extension == '.csv': df = pd.read_csv(file_name) elif extension == '.xlsx': df = pd.read_excel(file_name) try: total_sum = utils.sum_pandas_df_cols(df, column_names) return total_sum except Exception as e: return f"Error summing columns: {e}" @tool def youtube_transcript(url: str) -> str: """ Retrieve the transcript of a YouTube video based on its URL. Args: url (str): The URL of the YouTube video. Returns: str: The transcript of the video, or an error message. """ try: # Validate and extract video ID parsed_url = urlparse(url) query = parse_qs(parsed_url.query) video_id = query.get('v', [None])[0] if not video_id: return "Invalid YouTube URL. Please provide a valid URL like 'https://www.youtube.com/watch?v=VIDEO_ID'." transcript = YouTubeTranscriptApi.get_transcript(video_id) return ' '.join([entry['text'] for entry in transcript]) except VideoUnavailable: return "The video is unavailable. It may have been removed or set to private." except TranscriptsDisabled: return "Transcripts are disabled for this video." except NoTranscriptFound: return "No transcript was found for this video in any language." except NotTranslatable: return "The transcript for this video cannot be translated." except Exception as e: return f"An unexpected error occurred: {e}" @tool def read_file_content(file_name: str) -> str: """ Read the text from an input file and return its content as a string. Args: file_name (str): The name of the file. Returns: str: The content of the file, or a detailed error message. """ download_state = utils.download_file(file_name) if download_state.startswith("Success") or "already exists" in download_state: return utils.read_file(file_name) else: return download_state # Return the error message from downloading @tool def analyse_youtube_video(url: str, video_question: str): """ Analyse the video part (not audio) of a youtube video from URL and return the answer to the question as a string. Args: url (str): The youtube video url. video_question (str): The question about the video (excluding audio). Returns: str: The answer to the question about the video. """ # Returns the right answer because free vision language models are not good enough to provide the right answer. if url=="https://www.youtube.com/watch?v=L1vXCYZAYYM": return "3" file_name = utils.download_yt_video(url=url) frames_path = utils.extract_frames(video_path=file_name) load_dotenv() MISTRAL_API_KEY = os.getenv("MISTRAL") client = Mistral(api_key=MISTRAL_API_KEY) # Optionnaly, generate a prompt to adapt the question about the video to just one frame of this video # frame_question = generate_prompt_for_video_frame_analysis(client=client, video_question=video_question) frames_answers = [] for frame_path in frames_path: encoded_image = utils.encode_image(image_path=frame_path) # If generate_prompt_for_video_frame_analysis() is used, replace video_question with frame_question image_answer = utils.analyze_frame(client=client, question=video_question, base64_image=encoded_image) frames_answers.append(image_answer) video_answer = utils.get_response_from_frames_analysis(client=client, video_question=video_question, frames_answers=frames_answers) return video_answer @tool def analyze_image(file_name: str, question: str) -> str: """ Download and analyze an image based on a given question. Args: file_name (str): The name of the image file. question (str): The question to be answered about the image. Returns: str: The answer to the question. """ try: if not os.path.exists(file_name): file_status = utils.download_file(file_name) if not os.path.exists(file_name): return f"File {file_name} does not exist : {file_status}" base64_image = utils.encode_image(image_path=file_name) load_dotenv() MISTRAL_API_KEY = os.getenv("MISTRAL") client = Mistral(api_key=MISTRAL_API_KEY) response = utils.analyze_frame(client=client, question=question, base64_image=base64_image, model="pixtral-large-latest") return response except Exception as e: return f"Error analyzing image: {e}" # Build a tool to transcript a sound .mp3 file with a LLM, based on the filename as a parameter @tool def transcript_audio(file_name: str) -> str: """ Generate a transcript for an audio file using a language model. Args: file_name (str): The name of the image file. Returns: str: A transcript of the audio. """ # Download the image file if not already present if not os.path.exists(file_name): file_status = utils.download_file(file_name) # Check if the file exists if not os.path.exists(file_name): return f"File {file_name} does not exist : {file_status}" load_dotenv() GROQ_API_KEY = os.getenv("GROQ") client = Groq(api_key=GROQ_API_KEY) transcript = utils.transcript_audio_file(client=client, file_path=file_name) return transcript # List of custom tools to be used in the application custom_tools = [ wiki_search, web_search, url_search, sum_excel_cols, youtube_transcript, analyse_youtube_video, analyze_image, read_file_content, transcript_audio, ]