import os from glob import glob import numpy as np import json from matplotlib import pyplot as plt import pandas as pd def get_gts(clip): ''' clip: abs path to the clip dir ''' keypoints_files = sorted(glob(os.path.join(clip, 'keypoints_new/person_1')+'/*.json')) upper_body_points = list(np.arange(0, 25)) poses = [] confs = [] neck_to_nose_len = [] mean_position = [] for kp_file in keypoints_files: kp_load = json.load(open(kp_file, 'r'))['people'][0] posepts = kp_load['pose_keypoints_2d'] lhandpts = kp_load['hand_left_keypoints_2d'] rhandpts = kp_load['hand_right_keypoints_2d'] facepts = kp_load['face_keypoints_2d'] neck = np.array(posepts).reshape(-1,3)[1] nose = np.array(posepts).reshape(-1,3)[0] x_offset = abs(neck[0]-nose[0]) y_offset = abs(neck[1]-nose[1]) neck_to_nose_len.append(y_offset) mean_position.append([neck[0],neck[1]]) keypoints=np.array(posepts+lhandpts+rhandpts+facepts).reshape(-1,3)[:,:2] upper_body = keypoints[upper_body_points, :] hand_points = keypoints[25:, :] keypoints = np.vstack([upper_body, hand_points]) poses.append(keypoints) if len(neck_to_nose_len) > 0: scale_factor = np.mean(neck_to_nose_len) else: raise ValueError(clip) mean_position = np.mean(np.array(mean_position), axis=0) unlocalized_poses = np.array(poses).copy() localized_poses = [] for i in range(len(poses)): keypoints = poses[i] neck = keypoints[1].copy() keypoints[:, 0] = (keypoints[:, 0] - neck[0]) / scale_factor keypoints[:, 1] = (keypoints[:, 1] - neck[1]) / scale_factor localized_poses.append(keypoints.reshape(-1)) localized_poses=np.array(localized_poses) return unlocalized_poses, localized_poses, (scale_factor, mean_position) def get_full_path(wav_name, speaker, split): ''' get clip path from aud file ''' wav_name = os.path.basename(wav_name) wav_name = os.path.splitext(wav_name)[0] clip_name, vid_name = wav_name[:10], wav_name[11:] full_path = os.path.join('pose_dataset/videos/', speaker, 'clips', vid_name, 'images/half', split, clip_name) assert os.path.isdir(full_path), full_path return full_path def smooth(res): ''' res: (B, seq_len, pose_dim) ''' window = [res[:, 7, :], res[:, 8, :], res[:, 9, :], res[:, 10, :], res[:, 11, :], res[:, 12, :]] w_size=7 for i in range(10, res.shape[1]-3): window.append(res[:, i+3, :]) if len(window) > w_size: window = window[1:] if (i%25) in [22, 23, 24, 0, 1, 2, 3]: res[:, i, :] = np.mean(window, axis=1) return res def cvt25(pred_poses, gt_poses=None): ''' gt_poses: (1, seq_len, 270), 135 *2 pred_poses: (B, seq_len, 108), 54 * 2 ''' if gt_poses is None: gt_poses = np.zeros_like(pred_poses) else: gt_poses = gt_poses.repeat(pred_poses.shape[0], axis=0) length = min(pred_poses.shape[1], gt_poses.shape[1]) pred_poses = pred_poses[:, :length, :] gt_poses = gt_poses[:, :length, :] gt_poses = gt_poses.reshape(gt_poses.shape[0], gt_poses.shape[1], -1, 2) pred_poses = pred_poses.reshape(pred_poses.shape[0], pred_poses.shape[1], -1, 2) gt_poses[:, :, [1, 2, 3, 4, 5, 6, 7], :] = pred_poses[:, :, 1:8, :] gt_poses[:, :, 25:25+21+21, :] = pred_poses[:, :, 12:, :] return gt_poses.reshape(gt_poses.shape[0], gt_poses.shape[1], -1) def hand_points(seq): ''' seq: (B, seq_len, 135*2) hands only ''' hand_idx = [1, 2, 3, 4,5 ,6,7] + list(range(25, 25+21+21)) seq = seq.reshape(seq.shape[0], seq.shape[1], -1, 2) return seq[:, :, hand_idx, :].reshape(seq.shape[0], seq.shape[1], -1) def valid_points(seq): ''' hands with some head points ''' valid_idx = [0, 1, 2, 3, 4,5 ,6,7, 8, 9, 10, 11] + list(range(25, 25+21+21)) seq = seq.reshape(seq.shape[0], seq.shape[1], -1, 2) seq = seq[:, :, valid_idx, :].reshape(seq.shape[0], seq.shape[1], -1) assert seq.shape[-1] == 108, seq.shape return seq def draw_cdf(seq, save_name='cdf.jpg', color='slatebule'): plt.figure() plt.hist(seq, bins=100, range=(0, 100), color=color) plt.savefig(save_name) def to_excel(seq, save_name='res.xlsx'): ''' seq: (T) ''' df = pd.DataFrame(seq) writer = pd.ExcelWriter(save_name) df.to_excel(writer, 'sheet1') writer.save() writer.close() if __name__ == '__main__': random_data = np.random.randint(0, 10, 100) draw_cdf(random_data)