Spaces:
Build error
Build error
File size: 14,319 Bytes
865fd8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
class CasualCT(nn.Module):
def __init__(self,
in_channels,
out_channels,
leaky=False,
p=0,
groups=1, ):
'''
conv-bn-relu
'''
super(CasualCT, self).__init__()
padding = 0
kernel_size = 2
stride = 2
in_channels = in_channels * groups
out_channels = out_channels * groups
self.conv = nn.ConvTranspose1d(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
groups=groups)
self.norm = nn.BatchNorm1d(out_channels)
self.dropout = nn.Dropout(p=p)
if leaky:
self.relu = nn.LeakyReLU(negative_slope=0.2)
else:
self.relu = nn.ReLU()
def forward(self, x, **kwargs):
out = self.norm(self.dropout(self.conv(x)))
return self.relu(out)
class CasualConv(nn.Module):
def __init__(self,
in_channels,
out_channels,
leaky=False,
p=0,
groups=1,
downsample=False):
'''
conv-bn-relu
'''
super(CasualConv, self).__init__()
padding = 0
kernel_size = 2
stride = 1
self.downsample = downsample
if self.downsample:
kernel_size = 2
stride = 2
in_channels = in_channels * groups
out_channels = out_channels * groups
self.conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
groups=groups)
self.norm = nn.BatchNorm1d(out_channels)
self.dropout = nn.Dropout(p=p)
if leaky:
self.relu = nn.LeakyReLU(negative_slope=0.2)
else:
self.relu = nn.ReLU()
def forward(self, x, pre_state=None):
if not self.downsample:
if pre_state is not None:
x = torch.cat([pre_state, x], dim=-1)
else:
zeros = torch.zeros([x.shape[0], x.shape[1], 1], device=x.device)
x = torch.cat([zeros, x], dim=-1)
out = self.norm(self.dropout(self.conv(x)))
return self.relu(out)
class ConvNormRelu(nn.Module):
'''
(B,C_in,H,W) -> (B, C_out, H, W)
there exist some kernel size that makes the result is not H/s
#TODO: there might some problems with residual
'''
def __init__(self,
in_channels,
out_channels,
leaky=False,
sample='none',
p=0,
groups=1,
residual=False,
norm='bn'):
'''
conv-bn-relu
'''
super(ConvNormRelu, self).__init__()
self.residual = residual
self.norm_type = norm
padding = 1
if sample == 'none':
kernel_size = 3
stride = 1
elif sample == 'one':
padding = 0
kernel_size = stride = 1
else:
kernel_size = 4
stride = 2
if self.residual:
if sample == 'down':
self.residual_layer = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding)
elif sample == 'up':
self.residual_layer = nn.ConvTranspose1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding)
else:
if in_channels == out_channels:
self.residual_layer = nn.Identity()
else:
self.residual_layer = nn.Sequential(
nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding
)
)
in_channels = in_channels * groups
out_channels = out_channels * groups
if sample == 'up':
self.conv = nn.ConvTranspose1d(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
groups=groups)
else:
self.conv = nn.Conv1d(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
groups=groups)
self.norm = nn.BatchNorm1d(out_channels)
self.dropout = nn.Dropout(p=p)
if leaky:
self.relu = nn.LeakyReLU(negative_slope=0.2)
else:
self.relu = nn.ReLU()
def forward(self, x, **kwargs):
out = self.norm(self.dropout(self.conv(x)))
if self.residual:
residual = self.residual_layer(x)
out += residual
return self.relu(out)
class Res_CNR_Stack(nn.Module):
def __init__(self,
channels,
layers,
sample='none',
leaky=False,
casual=False,
):
super(Res_CNR_Stack, self).__init__()
if casual:
kernal_size = 1
padding = 0
conv = CasualConv
else:
kernal_size = 3
padding = 1
conv = ConvNormRelu
if sample == 'one':
kernal_size = 1
padding = 0
self._layers = nn.ModuleList()
for i in range(layers):
self._layers.append(conv(channels, channels, leaky=leaky, sample=sample))
self.conv = nn.Conv1d(channels, channels, kernal_size, 1, padding)
self.norm = nn.BatchNorm1d(channels)
self.relu = nn.ReLU()
def forward(self, x, pre_state=None):
# cur_state = []
h = x
for i in range(self._layers.__len__()):
# cur_state.append(h[..., -1:])
h = self._layers[i](h, pre_state=pre_state[i] if pre_state is not None else None)
h = self.norm(self.conv(h))
return self.relu(h + x)
class ExponentialMovingAverage(nn.Module):
"""Maintains an exponential moving average for a value.
This module keeps track of a hidden exponential moving average that is
initialized as a vector of zeros which is then normalized to give the average.
This gives us a moving average which isn't biased towards either zero or the
initial value. Reference (https://arxiv.org/pdf/1412.6980.pdf)
Initially:
hidden_0 = 0
Then iteratively:
hidden_i = hidden_{i-1} - (hidden_{i-1} - value) * (1 - decay)
average_i = hidden_i / (1 - decay^i)
"""
def __init__(self, init_value, decay):
super().__init__()
self.decay = decay
self.counter = 0
self.register_buffer("hidden", torch.zeros_like(init_value))
def forward(self, value):
self.counter += 1
self.hidden.sub_((self.hidden - value) * (1 - self.decay))
average = self.hidden / (1 - self.decay ** self.counter)
return average
class VectorQuantizerEMA(nn.Module):
"""
VQ-VAE layer: Input any tensor to be quantized. Use EMA to update embeddings.
Args:
embedding_dim (int): the dimensionality of the tensors in the
quantized space. Inputs to the modules must be in this format as well.
num_embeddings (int): the number of vectors in the quantized space.
commitment_cost (float): scalar which controls the weighting of the loss terms (see
equation 4 in the paper - this variable is Beta).
decay (float): decay for the moving averages.
epsilon (float): small float constant to avoid numerical instability.
"""
def __init__(self, embedding_dim, num_embeddings, commitment_cost, decay,
epsilon=1e-5):
super().__init__()
self.embedding_dim = embedding_dim
self.num_embeddings = num_embeddings
self.commitment_cost = commitment_cost
self.epsilon = epsilon
# initialize embeddings as buffers
embeddings = torch.empty(self.num_embeddings, self.embedding_dim)
nn.init.xavier_uniform_(embeddings)
self.register_buffer("embeddings", embeddings)
self.ema_dw = ExponentialMovingAverage(self.embeddings, decay)
# also maintain ema_cluster_size, which record the size of each embedding
self.ema_cluster_size = ExponentialMovingAverage(torch.zeros((self.num_embeddings,)), decay)
def forward(self, x):
# [B, C, H, W] -> [B, H, W, C]
x = x.permute(0, 2, 1).contiguous()
# [B, H, W, C] -> [BHW, C]
flat_x = x.reshape(-1, self.embedding_dim)
encoding_indices = self.get_code_indices(flat_x)
quantized = self.quantize(encoding_indices)
quantized = quantized.view_as(x) # [B, W, C]
if not self.training:
quantized = quantized.permute(0, 2, 1).contiguous()
return quantized, encoding_indices.view(quantized.shape[0], quantized.shape[2])
# update embeddings with EMA
with torch.no_grad():
encodings = F.one_hot(encoding_indices, self.num_embeddings).float()
updated_ema_cluster_size = self.ema_cluster_size(torch.sum(encodings, dim=0))
n = torch.sum(updated_ema_cluster_size)
updated_ema_cluster_size = ((updated_ema_cluster_size + self.epsilon) /
(n + self.num_embeddings * self.epsilon) * n)
dw = torch.matmul(encodings.t(), flat_x) # sum encoding vectors of each cluster
updated_ema_dw = self.ema_dw(dw)
normalised_updated_ema_w = (
updated_ema_dw / updated_ema_cluster_size.reshape(-1, 1))
self.embeddings.data = normalised_updated_ema_w
# commitment loss
e_latent_loss = F.mse_loss(x, quantized.detach())
loss = self.commitment_cost * e_latent_loss
# Straight Through Estimator
quantized = x + (quantized - x).detach()
quantized = quantized.permute(0, 2, 1).contiguous()
return quantized, loss
def get_code_indices(self, flat_x):
# compute L2 distance
distances = (
torch.sum(flat_x ** 2, dim=1, keepdim=True) +
torch.sum(self.embeddings ** 2, dim=1) -
2. * torch.matmul(flat_x, self.embeddings.t())
) # [N, M]
encoding_indices = torch.argmin(distances, dim=1) # [N,]
return encoding_indices
def quantize(self, encoding_indices):
"""Returns embedding tensor for a batch of indices."""
return F.embedding(encoding_indices, self.embeddings)
class Casual_Encoder(nn.Module):
def __init__(self, in_dim, embedding_dim, num_hiddens, num_residual_layers, num_residual_hiddens):
super(Casual_Encoder, self).__init__()
self._num_hiddens = num_hiddens
self._num_residual_layers = num_residual_layers
self._num_residual_hiddens = num_residual_hiddens
self.project = nn.Conv1d(in_dim, self._num_hiddens // 4, 1, 1)
self._enc_1 = Res_CNR_Stack(self._num_hiddens // 4, self._num_residual_layers, leaky=True, casual=True)
self._down_1 = CasualConv(self._num_hiddens // 4, self._num_hiddens // 2, leaky=True, downsample=True)
self._enc_2 = Res_CNR_Stack(self._num_hiddens // 2, self._num_residual_layers, leaky=True, casual=True)
self._down_2 = CasualConv(self._num_hiddens // 2, self._num_hiddens, leaky=True, downsample=True)
self._enc_3 = Res_CNR_Stack(self._num_hiddens, self._num_residual_layers, leaky=True, casual=True)
# self.pre_vq_conv = nn.Conv1d(self._num_hiddens, embedding_dim, 1, 1)
def forward(self, x):
h = self.project(x)
h, _ = self._enc_1(h)
h = self._down_1(h)
h, _ = self._enc_2(h)
h = self._down_2(h)
h, _ = self._enc_3(h)
# h = self.pre_vq_conv(h)
return h
class Casual_Decoder(nn.Module):
def __init__(self, out_dim, embedding_dim, num_hiddens, num_residual_layers, num_residual_hiddens):
super(Casual_Decoder, self).__init__()
self._num_hiddens = num_hiddens
self._num_residual_layers = num_residual_layers
self._num_residual_hiddens = num_residual_hiddens
# self.aft_vq_conv = nn.Conv1d(embedding_dim, self._num_hiddens, 1, 1)
self._dec_1 = Res_CNR_Stack(self._num_hiddens, self._num_residual_layers, leaky=True, casual=True)
self._up_2 = CasualCT(self._num_hiddens, self._num_hiddens // 2, leaky=True)
self._dec_2 = Res_CNR_Stack(self._num_hiddens // 2, self._num_residual_layers, leaky=True, casual=True)
self._up_3 = CasualCT(self._num_hiddens // 2, self._num_hiddens // 4, leaky=True)
self._dec_3 = Res_CNR_Stack(self._num_hiddens // 4, self._num_residual_layers, leaky=True, casual=True)
self.project = nn.Conv1d(self._num_hiddens//4, out_dim, 1, 1)
def forward(self, h, pre_state=None):
cur_state = []
# h = self.aft_vq_conv(x)
h, s = self._dec_1(h, pre_state[0] if pre_state is not None else None)
cur_state.append(s)
h = self._up_2(h)
h, s = self._dec_2(h, pre_state[1] if pre_state is not None else None)
cur_state.append(s)
h = self._up_3(h)
h, s = self._dec_3(h, pre_state[2] if pre_state is not None else None)
cur_state.append(s)
recon = self.project(h)
return recon, cur_state |