try: import cn2an except ImportError: print("The 'cn2an' module is not installed. Please install it using 'pip install cn2an'.") exit(1) try: import jieba except ImportError: print("The 'jieba' module is not installed. Please install it using 'pip install jieba'.") exit(1) import re import numpy as np import wave import jieba.posseg as pseg def save_audio(file_name, audio, rate=24000): """ 保存音频文件 :param file_name: :param audio: :param rate: :return: """ import os from config import DEFAULT_DIR audio = (audio * 32767).astype(np.int16) # 检查默认目录 if not os.path.exists(DEFAULT_DIR): os.makedirs(DEFAULT_DIR) full_path = os.path.join(DEFAULT_DIR, file_name) with wave.open(full_path, "w") as wf: wf.setnchannels(1) wf.setsampwidth(2) wf.setframerate(rate) wf.writeframes(audio.tobytes()) return full_path def combine_audio(wavs): """ 合并多段音频 :param wavs: :return: """ wavs = [normalize_audio(w) for w in wavs] # 先对每段音频归一化 combined_audio = np.concatenate(wavs, axis=1) # 沿着时间轴合并 return normalize_audio(combined_audio) # 合并后再次归一化 def normalize_audio(audio): """ Normalize audio array to be between -1 and 1 :param audio: Input audio array :return: Normalized audio array """ audio = np.clip(audio, -1, 1) max_val = np.max(np.abs(audio)) if max_val > 0: audio = audio / max_val return audio def combine_audio_with_crossfade(audio_arrays, crossfade_duration=0.1, rate=24000): """ Combine audio arrays with crossfade to avoid clipping noise at the junctions. :param audio_arrays: List of audio arrays to combine :param crossfade_duration: Duration of the crossfade in seconds :param rate: Sample rate of the audio :return: Combined audio array """ crossfade_samples = int(crossfade_duration * rate) combined_audio = np.array([], dtype=np.float32) for i in range(len(audio_arrays)): audio_arrays[i] = np.squeeze(audio_arrays[i]) # Ensure all arrays are 1D if i == 0: combined_audio = audio_arrays[i] # Start with the first audio array else: # Apply crossfade between the end of the current combined audio and the start of the next array overlap = np.minimum(len(combined_audio), crossfade_samples) crossfade_end = combined_audio[-overlap:] crossfade_start = audio_arrays[i][:overlap] # Crossfade by linearly blending the audio samples t = np.linspace(0, 1, overlap) crossfaded = crossfade_end * (1 - t) + crossfade_start * t # Combine audio by replacing the end of the current combined audio with the crossfaded audio combined_audio[-overlap:] = crossfaded # Append the rest of the new array combined_audio = np.concatenate((combined_audio, audio_arrays[i][overlap:])) return combined_audio def remove_chinese_punctuation(text): """ 移除文本中的中文标点符号 [:;!(),【】『』「」《》-‘“’”:,;!\(\)\[\]><\-] 替换为 , :param text: :return: """ chinese_punctuation_pattern = r"[:;!(),【】『』「」《》-‘“’”:,;!\(\)\[\]><\-·]" text = re.sub(chinese_punctuation_pattern, ',', text) # 使用正则表达式将多个连续的句号替换为一个句号 text = re.sub(r'[。,]{2,}', '。', text) # 删除开头和结尾的 , 号 text = re.sub(r'^,|,$', '', text) return text def remove_english_punctuation(text): """ 移除文本中的中文标点符号 [:;!(),【】『』「」《》-‘“’”:,;!\(\)\[\]><\-] 替换为 , :param text: :return: """ chinese_punctuation_pattern = r"[:;!(),【】『』「」《》-‘“’”:,;!\(\)\[\]><\-·]" text = re.sub(chinese_punctuation_pattern, ',', text) # 使用正则表达式将多个连续的句号替换为一个句号 text = re.sub(r'[,\.]{2,}', '.', text) # 删除开头和结尾的 , 号 text = re.sub(r'^,|,$', '', text) return text def text_normalize(text): """ 对文本进行归一化处理 (PaddlePaddle版本) :param text: :return: """ from zh_normalization import TextNormalizer # ref: https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/zh_normalization tx = TextNormalizer() sentences = tx.normalize(text) _txt = ''.join(sentences) return _txt def convert_numbers_to_chinese(text): """ 将文本中的数字转换为中文数字 例如 123 -> 一百二十三 :param text: :return: """ return cn2an.transform(text, "an2cn") def detect_language(sentence): # ref: https://github.com/2noise/ChatTTS/blob/main/ChatTTS/utils/infer_utils.py#L55 chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]') english_word_pattern = re.compile(r'\b[A-Za-z]+\b') chinese_chars = chinese_char_pattern.findall(sentence) english_words = english_word_pattern.findall(sentence) if len(chinese_chars) > len(english_words): return "zh" else: return "en" def split_text(text, min_length=60): """ 将文本分割为长度不小于min_length的句子 :param text: :param min_length: :return: """ # 短句分割符号 sentence_delimiters = re.compile(r'([。?!\.]+)') # 匹配多个连续的回车符 作为段落点 强制分段 paragraph_delimiters = re.compile(r'(\s*\n\s*)+') paragraphs = re.split(paragraph_delimiters, text) result = [] for paragraph in paragraphs: if not paragraph.strip(): continue # 跳过空段落 # 小于阈值的段落直接分开 if len(paragraph.strip()) < min_length: result.append(paragraph.strip()) continue # 大于的再计算拆分 sentences = re.split(sentence_delimiters, paragraph) current_sentence = '' for sentence in sentences: if re.match(sentence_delimiters, sentence): current_sentence += sentence.strip() + '' if len(current_sentence) >= min_length: result.append(current_sentence.strip()) current_sentence = '' else: current_sentence += sentence.strip() if current_sentence: if len(current_sentence) < min_length and len(result) > 0: result[-1] += current_sentence else: result.append(current_sentence) if detect_language(text[:1024]) == "zh": result = [normalize_zh(_.strip()) for _ in result if _.strip()] else: result = [normalize_en(_.strip()) for _ in result if _.strip()] return result def normalize_en(text): # 不再在 ChatTTS 外正则化文本 # from tn.english.normalizer import Normalizer # normalizer = Normalizer() # text = normalizer.normalize(text) # text = remove_english_punctuation(text) return text def normalize_zh(text): # 不再在 ChatTTS 外正则化文本 # from tn.chinese.normalizer import Normalizer # normalizer = Normalizer() # text = normalizer.normalize(text) # text = remove_chinese_punctuation(text) text = process_ddd(text) return text def batch_split(items, batch_size=5): """ 将items划分为大小为batch_size的批次 :param items: :param batch_size: :return: """ return [items[i:i + batch_size] for i in range(0, len(items), batch_size)] # 读取 txt 文件,支持自动判断文件编码 def read_long_text(file_path): """ 读取长文本文件,自动判断文件编码 :param file_path: 文件路径 :return: 文本内容 """ encodings = ['utf-8', 'gbk', 'iso-8859-1', 'utf-16'] for encoding in encodings: try: with open(file_path, 'r', encoding=encoding) as file: return file.read() except (UnicodeDecodeError, LookupError): continue raise ValueError("无法识别文件编码") def replace_tokens(text): remove_tokens = ['UNK'] for token in remove_tokens: text = re.sub(r'\[' + re.escape(token) + r'\]', '', text) tokens = ['uv_break', 'laugh','lbreak'] for token in tokens: text = re.sub(r'\[' + re.escape(token) + r'\]', f'uu{token}uu', text) text = text.replace('_', '') return text def restore_tokens(text): tokens = ['uvbreak', 'laugh', 'UNK', 'lbreak'] for token in tokens: text = re.sub(r'uu' + re.escape(token) + r'uu', f'[{token}]', text) text = text.replace('[uvbreak]', '[uv_break]') return text def process_ddd(text): """ 处理“地”、“得” 字的使用,都替换为“的” 依据:地、得的使用,主要是在动词和形容词前后,本方法没有严格按照语法替换,因为时常遇到用错的情况。 另外受 jieba 分词准确率的影响,部分情况下可能会出漏掉。例如:小红帽疑惑地问 :param text: 输入的文本 :return: 处理后的文本 """ word_list = [(word, flag) for word, flag in pseg.cut(text, use_paddle=False)] # print(word_list) processed_words = [] for i, (word, flag) in enumerate(word_list): if word in ["地", "得"]: # Check previous and next word's flag # prev_flag = word_list[i - 1][1] if i > 0 else None # next_flag = word_list[i + 1][1] if i + 1 < len(word_list) else None # if prev_flag in ['v', 'a'] or next_flag in ['v', 'a']: if flag in ['uv', 'ud']: processed_words.append("的") else: processed_words.append(word) else: processed_words.append(word) return ''.join(processed_words) def replace_space_between_chinese(text): return re.sub(r'(?<=[\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff])', '', text) if __name__ == '__main__': # txts = [ # "快速地跑过红色的大门", # "笑得很开心,学得很好", # "小红帽疑惑地问?", # "大灰狼慌张地回答", # "哦,这是为了更好地听你说话。", # "大灰狼不耐烦地说:“为了更好地抱你。”", # "他跑得很快,工作做得非常认真,这是他努力地结果。得到", # ] # for txt in txts: # print(txt, '-->', process_ddd(txt)) txts = [ "电影中梁朝伟扮演的陈永仁的编号27149", "这块黄金重达324.75克 我们班的最高总分为583分", "12\~23 -1.5\~2", "居维埃·拉色别德①、杜梅里②、卡特法日③," ] for txt in txts: print(txt, '-->', text_normalize(txt)) # print(txt, '-->', convert_numbers_to_chinese(txt))